
2024学年江苏省扬州市部分区、县数学八年级第一学期期末联考试题含解析.doc
19页2024学年八年级上学期数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回一、选择题(每小题3分,共30分)1.如果把分式中和都扩大10倍,那么分式的值 ( )A.扩大2倍 B.扩大10倍 C.不变 D.缩小10倍2.下列四个结论中,正确的是( )A. B.C. D.3.已知点M(1-2m,m-1)在第二象限,则m的取值范围是( )A. B. C. D.4.下列四个图形中,线段BE是△ABC的高的是( )A. B. C. D.5.如图,已知数轴上的五点,,,,分别表示数,,,,,则表示的点应落段( )A.线段上 B.线段上 C.线段上 D.线段上6.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是( )A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab7.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x米,则可得方程=20,…”根据答案,题中被墨汁污染条件应补为( )A.每天比原计划多铺设10米,结果延期20天完成B.每天比原计划少铺设10米,结果延期20天完成C.每天比原计划多铺设10米,结果提前20天完成D.每天比原计划少铺设10米,结果提前20天完成8.能使成立的x的取值范围是( )A.x≠2 B.x≥0 C.x≥2 D.x>29.如图,D,E分别在AB,AC上,,添加下列条件,无法判定的是( )A. B. C. D.10.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,若CE=1,AB=4,则下列结论一定正确的个数是( )①BC=CD;②BD>CE;③∠CED+∠DFB=2∠EDF;④△DCE与△BDF的周长相等;A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.若解分式方程产生增根,则__________.12.如图,在中,,是的平分线,⊥于点,点在上,,若,,则的长为_______.13.在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,则m_____n.(填“>”或“<”)14.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则 .(填”>”,”<”或”=”)15.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________16.如图,等腰△ABC中,AB=AC,折叠△ABC,使点A与点B重合,折痕为DE,若∠DBC=15°,则∠A的度数是______.17.如图,在等边中,将沿虚线剪去,则___°.18.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=140°,则∠a的度数是________三、解答题(共66分)19.(10分)如图1,两个不全等的等腰直角三角形和叠放在一起,并且有公共的直角顶点.(1)在图1中,你发现线段的数量关系是______.直线相交成_____度角.(2)将图1中绕点顺时针旋转90°,连接得到图2,这时(1)中的两个结论是否成立?请作出判断说明理由.20.(6分)先化简,再求值:(1﹣)÷,其中a=﹣1.21.(6分)如图,等边△ABC的边AC,BC上各有一点E,D,AE=CD,AD,BE相交于点O.(1)求证:△ABE≌△CAD;(2)若∠OBD=45°,求∠ADC的度数.22.(8分)如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.(1)求证:AE=CG;(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE= 23.(8分)分解因式:16n4 ﹣124.(8分)如图,在等边中,分别为的中点,延长至点,使,连结和.(1)求证:(2)猜想:的面积与四边形的面积的关系,并说明理由.25.(10分)某业主贷款88000元购进一台机器,生产某种产品,已知产品的成本是每个5元,售价是每个8元,应付的税款和其他费用是售价的10%,若每个月能生产、销售8000个产品,问至少几个月后能赚回这台机器贷款?(用列不等式的方法解决)26.(10分)请你先化简:,然后从中选一个合适的整数作为x的值代入求值.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意,将分式换成10x,10y,再化简计算即可.【详解】解:若和都扩大10倍,则,故分式的值不变,故答案为:C.【点睛】本题考查了分式的基本性质,解题的关键是用10x,10y替换原分式中的x,y计算.2、B【分析】计算每个选项两边的数的平方即可估算出的范围.【详解】解:∵,,,∴.故选:B.【点睛】本题考查了无理数的估算,属于基本题型,掌握估算的方法是解题关键.3、B【分析】根据平面直角坐标系中第二象限点的符号特征可列出关于m的不等式组,求解即可.【详解】解:根据题意可得 解不等式①得: 解不等式②得:∴该不等式组的解集是.故选B【点睛】本题考查了平面直角坐标系中象限点的特征及不等式组的解法,根据象限点的特征列出不等式组是解题的关键.4、D【解析】试题分析:根据三角形的高线的定义可得,则D选项中线段BE是△ABC的高.考点:三角形的高5、A【分析】先求出的取值范围,从而求出-1的取值范围,继而求出的取值范围,然后根据数轴即可得出结论.【详解】解:∵2<<3∴2-1<-1<3-1即1<-1<2∴1<<2由数轴可知表示的点应落段上.故选A.【点睛】此题考查的是实数的比较大小,掌握实数比较大小的方法是解决此题的关键.6、A【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.7、B【分析】工作时间=工作总量÷工作效率.那么4000÷x表示原来的工作时间,那么4000÷(x﹣10)就表示现在的工作时间,20就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x米,那么(x﹣10)就应该是实际每天比原计划少铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划少铺设10米,结果延期20天完成.故选:B.【点睛】本题考查了由实际问题抽象除法分式方程,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.8、D【分析】根据被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围即可.【详解】由题意可得:,解得:x>1.故选D.【点睛】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9、A【分析】根据三角形全等的判定定理,逐一判断选项,即可.【详解】∵,∠A=∠A,若添加,不能证明,∴A选项符合题意;若添加,根据AAS可证明,∴B选项不符合题意;若添加,根据AAS可证明,∴C选项不符合题意;若添加,根据ASA可证明,∴D选项不符合题意;故选A.【点睛】本题主要考查三角形全等的判定方法,理解AAA不能判定两个三角形全等,是解题的关键.10、D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AB=4可得AC=BC=4,则AE=3=DE,由勾股定理可得CD=2, ①正确;BD=4-2,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB,故∠CED+∠DFB=90°=2∠EDF,③正确;△DCE的周长=CD+CE+DE=2+4,△BDF的周长=BD+BF+DF=BD+AB=4+4-2=4+2,④正确;故正确的选项有4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.二、填空题(每小题3分,共24分)11、-5.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x+4),得∵原方程增根为x =−4,∴把x=−4代入整式方程,得,解得.故答案为-5.【点睛】本题考查分式方程的增根,解决本题时需注意,要将增根x=-4,代入分式方程化为整式方程后的方程中,不然无法求得m的值.12、【分析】由AD为角平分线,利用角平分线定理得到DE=DC,再由BD=DF,利用HL得到三角形FCD与三角形BDF全等,利用全等三角形对应边相等得出CD=BE,利用AAS得到三角形ACD与三角形AED全等,利用全等三角形对应边相等得到AC=AE,由AB=AE+EB,得出AB=AF+2BE.再利用直角三角形的面积公式解答即可.【详解】解:是的平分线,,,,在和中,,,,;在和中,,,,,,,即,解得:.故答案:.【点睛】此题考查了全等三角形的判定与性质,以及角平分线性质,熟练掌握全等三角形的判定与性质是解本题的关键.13、>【解析】将点A,点B坐标代入可求m,n的值,即可比较m,n的大小.【详解】解:∵一次函数y=﹣2x+1的图象经过A(a,m),B(a+1,n)两点,∴m=﹣2a+1,n=﹣2a﹣1∴m>n故答案为>【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上的点的坐标满足函数解析式.14、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数 y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.15、 【分析】(1)由题意,找出规律,即可得。












