
人教A版必修2-第十章-概率测试题(含答案).docx
11页章末检测试卷五(第十章)(时间:120分钟 满分:150分)一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的不得分)1.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A.B.C.D.答案 D解析 抛掷一枚硬币,有正面朝上和反面朝上两种可能,概率均为,与第几次抛掷无关,故选D.2.某产品分甲、乙、丙三级,其中乙、丙两级均属于次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则从产品中任意抽查一件抽得正品的概率为( )A.0.09B.0.98C.0.97D.0.96答案 D解析 任意抽查一件抽得正品的概率为1-0.03-0.01=0.96.3.一件产品要经过两道独立的加工程序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为( )A.1-a-b B.1-abC.(1-a)(1-b) D.1-(1-a)(1-b)答案 C解析 ∵两道工序相互独立,∴产品的正品率为(1-a)(1-b).4.甲、乙两名学生通过某种听力测试的概率分别为和,两人同时参加测试,其中有且只有一人能通过的概率是( )A.B.C.D.1答案 C解析 设事件A表示“甲通过听力测试”,事件B表示“乙通过听力测试”.根据题意,知事件A和B相互独立,且P(A)=,P(B)=.记“有且只有一人通过听力测试”为事件C,则C=A∪B,且A和B互斥.故P(C)=P(A∪B)=P(A)+P(B)=P(A)P()+P()P(B)=×+×=.5.根据某市疾控中心的健康监测,该市在校中学生的近视率约为78.7%.某眼镜厂商要到一中学给近视学生配送滴眼液,每人一瓶,已知该校学生总数为600人,则眼镜厂商应带滴眼液的瓶数为( )A.600 B.787C.不少于473 D.不多于473答案 C解析 由概率的意义,该校近视生人数约为78.7%×600=472.2,结合实际情况,应带滴眼液不少于473瓶.6.甲在群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“手气最佳”(即乙领取的钱数不少于其他任何人)的概率是( )A.B.C.D.答案 D解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元.乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为(1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2).乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1),(2,2,2).根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P==.7.一个口袋内装有大小相同的红、蓝球各一个,若有放回地摸出一个球并记下颜色为一次试验,试验共进行三次,则至少摸到一次红球的概率是( )A.B.C.D.答案 B解析 所有的样本点为(红,红,红),(红,红,蓝),(红,蓝,红),(蓝,红,红),(红,蓝,蓝),(蓝,红,蓝),(蓝,蓝,红),(蓝,蓝,蓝),共8个.三次都是蓝球的样本点只有1个,其概率是,根据对立事件的概率之间的关系,所求的概率为1-=,故选B.8.排球比赛的规则是5局3胜制(无平局),在某次排球比赛中,甲队在每局比赛中获胜的概率都为,前2局中乙队以2∶0领先,则最后乙队获胜的概率是( )A.B.C.D.答案 B解析 最后乙队获胜事件含3种情况:①第三局乙胜;②第三局甲胜,第四局乙胜;③第三局和第四局都是甲胜,第五局乙胜.故最后乙队获胜的概率P=+×+2×=,故选B.9.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大答案 D解析 设i班被选到的概率为P(i),i=2,3,4,…,12,则P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选D.10.从一批苹果中随机抽取50个,其质量(单位:克)的频数分布表如下:分组[80,85)[85,90)[90,95)[95,100]频数5102015用分层随机抽样的方法从质量在[80,85)和[95,100]内的苹果中共抽取4个,再从抽取的4个苹果中任取2个,则有1个苹果的质量在[80,85)内的概率为( )A.B.C.D.答案 C解析 设从质量在[80,85)内的苹果中抽取x个,则从质量在[95,100]内的苹果中抽取(4-x)个,因为频数分布表中[80,85),[95,100]两组的频数分别为5,15,所以5∶15=x∶(4-x),解得x=1,即抽取的4个苹果中质量在[80,85)内的有1个,记为a,质量在[95,100]内的有3个,记为b1,b2,b3,任取2个有ab1,ab2,ab3,b1b2,b1b3,b2b3共6个样本点,其中有1个苹果的质量在[80,85)内的样本点有ab1,ab2,ab3,共3个,所以所求概率为=.11.下列事件中是随机事件的有( )A.如果a,b是实数,那么b+a=a+bB.某地1月1日刮西北风C.当x是实数时,x2≥0D.一个电影院某天的上座率超过50%答案 BD解析 AC是必然事件,BD是随机事件.12.下列说法中错误的有( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.概率是随机的,在试验前不能确定答案 ABD解析 必然事件发生的概率为1,不可能事件发生的概率为0,所以任何事件发生的概率总在[0,1]之间,故A错,B,D混淆了频率与概率的概念,也错.13.一个人连续射击2次,则下列各事件关系中,说法正确的是( )A.事件“两次均击中”与事件“至少一次击中”互为对立事件B.事件“第一次击中”与事件“第二次击中”为互斥事件C.事件“恰有一次击中”与事件“两次均击中”为互斥事件D.事件“两次均未击中”与事件“至少一次击中”互为对立事件答案 CD解析 对于A,事件“至少一次击中”包含“一次击中”和“两次均击中”,所以A错误;对于B,事件“第一次击中”包含“第一次击中、第二次击中”和“第一次击中、第二次不中”,所以与事件“第二次击中”不是互斥事件,B错误;对于C,事件“恰有一次击中”是“一次击中、一次不中”,它与事件“两次均击中”是互斥事件,C正确;对于D,事件“两次均未击中”的对立事件是“至少一次击中”,D正确.二、填空题(本大题共4小题,每小题4分,共16分)14.我国西部一个地区的年降水量在下列区间内的概率如表所示:年降水量/mm[100,150)[150,200)[200,250)[250,300]概率0.210.160.130.12则年降水量在[200,300](mm)范围内的概率是________.答案 0.25解析 “年降水量在[200,300](mm)范围内”由“年降水量在[200,250)(mm)范围内”和“年降水量在[250,300](mm)范围内”两个互斥事件构成,因此概率为0.13+0.12=0.25.15.为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.答案 12000解析 设保护区内有这种动物x只,因为每只动物被逮到的概率是相同的,所以=,解得x=12000.16.一个三位自然数,百位、十位、个位上的数字依次为a,b,c,当且仅当a>b,b
