好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

三角形中做辅助线的技巧.docx

21页
  • 卖家[上传人]:博****1
  • 文档编号:512424849
  • 上传时间:2022-10-19
  • 文档格式:DOCX
  • 文档大小:193.37KB
  • / 21 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 三角形中做辅助线的技巧口诀: 三角形图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看线段垂直平分线,常向两端把线连线段和差及倍半,延长缩短可试验线段和差不等式,移到同一三角去三角形中两中点,连接则成中位线三角形中有中线,延长中线等中线一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线也可将图对折看,对称以后关系现角平分线平行线,等腰三角形来添角平分线加垂线,三线合一试试看角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等对于有角平分线的辅助线的作法,一般有两种①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形至于选取哪种方法,要结合题目图形和已知条件与角有关的辅助线(一)、截取构全等如图1-2,AB//CD,BE平分∠BCD,CE平分∠BCD,点E在AD上,求证:BC=AB+CD已知:如图1-4,在△ABC中,∠C=2∠B,AD平分∠BAC,求证:AB-AC=CD(二)、角分线上点向角两边作垂线构全等过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题。

      例1. 如图2-1,已知AB>AD, ∠BAC=∠FAC,CD=BC求证:∠ADC+∠B=180 例2. 已知如图2-3,△ABC的角平分线BM、CN相交于点P求证:∠BAC的平分线也经过点P 练习:1.如图2-4∠AOP=∠BOP=15 ,PC//OA,PD⊥OA, 如果PC=4,则PD=( ) A 4 B 3 C 2 D 12.已知:如图2-6,在正方形ABCD中,E为CD 的中点,F为BC 上的点,∠FAE=∠DAE求证:AF=AD+CF 3.已知:如图2-7,在Rt△ABC中,∠ACB=90 ,CD⊥AB,垂足为D,AE平分∠CAB交CD于F,过F作FH//AB交BC于H求证CF=BH三):作角平分线的垂线构造等腰三角形从角的一边上的一点作角平分线的垂线,使之与角的两边相交,则截得一个等腰三角形,垂足为底边上的中点,该角平分线又成为底边上的中线和高,以利用中位线的性质与等腰三角形的三线合一的性质如果题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交)。

      例1. 已知:如图3-1,∠BAD=∠DAC,AB>AC,CD⊥AD于D,H是BC中点求证:DH=(AB-AC)分析:延长CD交AB于点E,则可得全等三角形问题可证例2.已知:如图3-2,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形例3.已知:如图3-3在△ABC中,AD、AE分别∠BAC的内、外角平分线,过顶点B作BFAD,交AD的延长线于F,连结FC并延长交AE于M求证:AM=ME分析:由AD、AE是∠BAC内外角平分线,可得EA⊥AF,从而有BF//AE,所以想到利用比例线段证相等例3. 已知:如图3-4,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于M求证:AM=(AB+AC)分析:题设中给出了角平分线AD,自然想到以AD为轴作对称变换,作△ABD关于AD的对称△AED,然后只需证DM=EC,另外由求证的结果AM=(AB+AC),即2AM=AB+AC,也可尝试作△ACM关于CM的对称△FCM,然后只需证DF=CF即可。

      练习:1. 已知:在△ABC中,AB=5,AC=3,D是BC中点,AE是∠BAC的平分线,且CE⊥AE于E,连接DE,求DE2. 已知BE、BF分别是△ABC的∠ABC的内角与外角的平分线,AF⊥BF于F,AE⊥BE于E,连接EF分别交AB、AC于M、N,求证MN=BC(四)、以角分线上一点做角的另一边的平行线有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形如图4-1和图4-2所示BDCA 例1 如图,BC>BA,BD平分∠ABC,且AD=CD,求证:∠A+∠C=180ABECD例2 如图,AB∥CD,AE、DE分别平分∠BAD各∠ADE,求证:AD=AB+CD 练习:1. 已知,如图,∠C=2∠A,AC=2BC求证:△ABC是直角三角形ABCD2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC⊥ACCABAEBDC 3.已知CE、AD是△ABC的角平分线,∠B=60°,求证:AC=AE+CD4.已知:如图在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,求证:BC=AB+AD二、 由线段和差想到的辅助线口诀:线段和差及倍半,延长缩短可试验。

      线段和差不等式,移到同一三角去遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明一、 在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1、 已知如图1-1:D、E为△ABC内两点,求证:AB+AC>BD+DE+CE. 二、 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 三、截长补短法作辅助线例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点求证:AB-AC>PB-PCDAECB 例1.如图,AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

      例2如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC中,AB=AC,A=108°,BD平分ABCDCBA求证:BC=AB+DCMBDCA例4如图,已知Rt△ABC中,∠ACB=90°,AD是∠CAB的平分线,DM⊥AB于M,且AM=MB求证:CD=DB方法精讲】常用辅助线添加方法——倍长中线 △ABC中 方式1: 延长AD到E, AD是BC边中线 使DE=AD, 连接BE 方式2:间接倍长 作CF⊥AD于F, 延长MD到N, 作BE⊥AD的延长线于E 使DN=MD,连接BE 连接CD【经典例题】例1:△ABC中,AB=5,AC=3,求中线AD的取值范围提示:画出图形,倍长中线AD,利用三角形两边之和大于第三边例2:已知在△ABC中,AB=AC,D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE方法1:过D作DG∥AE交BC于G,证明ΔDGF≌ΔCEF方法2:过E作EG∥AB交BC的延长线于G,证明ΔEFG≌ΔDFB方法3:过D作DG⊥BC于G,过E作EH⊥BC的延长线于H 证明ΔBDG≌ΔECH例3:已知在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF提示:倍长AD至G,连接BG,证明ΔBDG≌ΔCDA 三角形BEG是等腰三角形例4:已知:如图,在中,,D、E在BC上,且DE=EC,过D作交AE于点F,DF=AC.求证:AE平分提示:方法1:倍长AE至G,连结DG方法2:倍长FE至H,连结CH例5:已知CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE提示:倍长AE至F,连结DF 证明ΔABE≌ΔFDE(SAS)进而证明ΔADF≌ΔADC(SAS)【融会贯通】1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。

      试探究线段AB与AF、CF之间的数量关系,并证明你的结论提示:延长AE、DF交于G 证明AB=GC、AF=GF 所以AB=AF+FC2、如图,AD为的中线,DE平分交AB于E,DF平分交AC于F. 求证:提示:方法1:在DA上截取DG=BD,连结EG、FG证明ΔBDE≌ΔGDE ΔDCF≌ΔDGF 所以BE=EG、CF=FG利用三角形两边之和大于第三边方法2:倍长ED至H,连结CH、FH证明FH=EF、CH=BE利用三角形两边之和大于第三边3、已知:如图,DABC中,ÐC=90°,CM^AB于M,AT平分ÐBAC交CM于D,交BC于T,过D作DE//AB交BC于E,求证:CT=BE.提示:过T作TN⊥AB于N 证明ΔBTN≌ΔECD三、 由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线三角形中有中线,延长中线等中线在三角形中,如果已知一点是三角形某一边。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.