好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

[专升本(地方)考试密押题库与答案解析]贵州省专升本考试高等数学模拟32.docx

8页
  • 卖家[上传人]:庄**
  • 文档编号:189870842
  • 上传时间:2021-08-07
  • 文档格式:DOCX
  • 文档大小:21.27KB
  • / 8 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • [专升本(地方)考试密押题库与答案解析]贵州省专升本考试高等数学模拟32[专升本(地方)考试密押题库与答案解析]贵州省专升本考试高等数学模拟32贵州省专升本考试高等数学模拟32第Ⅰ卷 客观题一、单项选择题问题:1. 曲线y=x4+4x上切线平行于横轴的点是______A.(0,0)B.(0,2)C.(-1,-3)D.(1,5)答案:C[解析] 令y=4x3+4=0,得x=-1,y=-3,故应选C.问题:2. 已知函数f(x)满足xf(x)=f(x),且f(1)=e2,则f(-1)=______A.e-2B.-e2C.e2D.2答案:B[解析] 由题设知,解得y=Cx, 又f(1)=e2,代入解得C=e2, 所求特解为f(x)=e2x,所以f(-1)=-e2,故应选B. 问题:3. 函数的定义域为______A.(-∞,2)∪(2,+∞)B.(1,5]C.[1,2)∪(2,5]D.(1,2)答案:C[解析] 依题意得故函数y的定义域为[1,2)∪(2,5].问题:4. 设D={(x,y)|0≤x≤2,0≤y≤1},则______A.2(e-1)B.(e-1)2C.2eD.e+1答案:A[解析] ,故应选A.问题:5. 二元函数z=x2-4xy+5y2+2y的极小值点______A.(-1,-2)B.(1,2)C.(2,1)D.(-2,-1)答案:D[解析] 解得唯一驻点(-2,-1)故应选D.问题:6. 设L为以点O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形正向边界,则∮Lx2ydy+xy2dx=______A.1B.2C.3D.0答案:D[解析] 因为,所以此曲线积分与路径无关,闭曲线积分为0,故应选D问题:7. ______A.0B.-πC.πD.2π答案:A[解析] 被积函数是奇函数,积分区间是关于原点对称的,所以,故应选A.问题:8. 设f(2x-1)=ex,则f(x)=______ A. B. C. D. 答案:B[解析] 因为f(2x-1)=ex,所以, 从而故应选B. 问题:9. 设则x=0是f(x)的______A.连续点B.可去间断点C.跳跃间断点D.第二类间断点答案:B[解析] 因为,而f(0)=1,所以x=0是f(x)的可去间断点,故应选B。

      问题:10. 已知函数f(2x-1)的定义域为[0,1],则函数f(x)的定义域为______ A. B.[-1,1] C.[0,1] D.[-1,2] 答案:B[解析] 由f(2x-1)的定义域为[0,1],可知-1≤2x-1≤1,所以f(x)的定义域为[-1,1],故应选B.二、填空题问题:1. 假设函数f(x)是周期为2的可导函数,则f(x)的周期为______.答案:2[解析] f(x)=f(x+2),两边求导可知f(x)=f(x+2).可知导数的周期和其对应的函数周期一致.问题:2. 以y=C1e-3x+C2xe-3x为通解的二阶常系数齐次线性微分方程为______.答案: y"+6y+9y=0[解析] 由y=C1e-3x+C2xe-3x为通解知,特征方程有二重特征根r=-3,特征方程为(r+3)2=0,即r2+pr+q=0,所以微分方程为y"+6y+9y=0.问题:3. 函数的定义域为______.答案: (2,3][解析] 由|x-2|≤1,得1≤x≤3,且x>2,故x∈(2,3].问题:4. 已知数项级数收敛,则其和______.答案: e-1[解析] 因为 取x=1得,所以 问题:5. 已知曲线y=ax2与y=lnx相切,则a=______.答案:[解析] 曲线y1=ax2与y2=lnx相切,故存在x0,使 y1(x0)=y2(x0)且y1(x0)=y2(x0), 代回方程组得 问题:6. 已知x-excosy=0,则dy=______.答案: [解析] 对方程x-excosy=0两边同求微分得 dx-[excosydx+ex(-siny)dy]=0, dx-(excosydx-exsinydy)=0, 问题:7. 函数y=sinx-x在区间[0,π]上的最大值是______.答案:0[解析] y=cosx-1≤0,故y在[0,π]上单调递减,故最大值为y(0)=0.问题:8. 设z=e-x-(x-2y)tan(xy),则答案:-e-2[解析] z(x,0)=e-x,zx=-e-x,所以问题:9. 微分方程xy-3y=x2的通解为______.答案: y=Cx3-x2[解析] 方程化为 问题:10. 以y=C1ex+C2xex为通解的微分方程是______.答案:y"-2y+y=0[解析] 由题知,特征方程有二重特根r=1, 从而特征方程为r2-2r+1=0, 所以微分方程为y"-2y+y=0. 第Ⅱ卷 主观题三、计算题(本题共30分)问题:1. 计算答案:解:当x→0时,故原极限为型的极限,应用洛必达法则可得, 问题:2. 求微分方程y"+6y+13y=0的通解.答案:解:该方程的特征方程为r2+6r+13=0, 解得特征根为r1,2=-32i, 故所求方程的通解为 y=e-3x(C1cos2x+C2sin2x). 问题:3. 计算二次积分答案:解:由可知,积分区域 D={(x,y)|0≤y≤1,y≤x≤1}, ={(x,y)|0≤x≤1,0≤y≤x}, 所以 问题:4. 将函数展开成(x+4)的幂级数.答案:解: 又 所以 四、应用题(共12分)问题:1. 求抛物线将圆x2+y2=8分割后形成的两部分的面积.答案:画出图形如图所示,设上、下两部分的面积分别为S1,S2,且S1,S2均关于y轴对称,由于抛物线与圆在第一象限的交点坐标A(2,2), 故直线OA的方程为y=x,所以扇形OAB的面积等于圆面积,故 五、证明题(共8分)问题:1. 若f(x)在[0,1]上连续证明,并求答案:证:因f(x)在[0,1]上连续,从而定积分存在, 设,则,dx=-dt, 当x=0时,当时,t=0. 故 即有 因为 所以 8 / 8。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.