高考第一轮复习数学:7.3对称问题教案含习题及答案.doc
9页高考数学精品复习资料 2019.57.3 对称问题●知识梳理1.点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题.设P(x0,y0),对称中心为A(a,b),则P关于A的对称点为P′(2a-x0,2b-y0).2.点关于直线成轴对称问题由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”.利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标.一般情形如下:设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有可求出x′、y′.·k=-1,=k·+b,特殊地,点P(x0,y0)关于直线x=a的对称点为P′(2a-x0,y0);点P(x0,y0)关于直线y=b的对称点为P′(x0,2b-y0).3.曲线关于点、曲线关于直线的中心或轴对称问题,一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化).一般结论如下:(1)曲线f(x,y)=0关于已知点A(a,b)的对称曲线的方程是f(2a-x,2b-y)=0.(2)曲线f(x,y)=0关于直线y=kx+b的对称曲线的求法:设曲线f(x,y)=0上任意一点为P(x0,y0),P点关于直线y=kx+b的对称点为P′(y,x),则由(2)知,P与P′的坐标满足从中解出x0、y0,·k=-1,=k·+b, 代入已知曲线f(x,y)=0,应有f(x0,y0)=0.利用坐标代换法就可求出曲线f(x,y)=0关于直线y=kx+b的对称曲线方程.4.两点关于点对称、两点关于直线对称的常见结论:(1)点(x,y)关于x轴的对称点为(x,-y);(2)点(x,y)关于y轴的对称点为(-x,y);(3)点(x,y)关于原点的对称点为(-x,-y);(4)点(x,y)关于直线x-y=0的对称点为(y,x);(5)点(x,y)关于直线x+y=0的对称点为(-y,-x).●点击双基1.已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q的坐标为A.(a,b) B.(b,a)C.(-a,-b) D.(-b,-a)解析:N(a,-b),P(-a,-b),则Q(b,a).答案:B2.(2004年浙江,理4)曲线y2=4x关于直线x=2对称的曲线方程是A.y2=8-4x B.y2=4x-8C.y2=16-4x D.y2=4x-16解析:设曲线y2=4x关于直线x=2对称的曲线为C,在曲线C上任取一点P(x,y),则P(x,y)关于直线x=2的对称点为Q(4-x,y).因为Q(4-x,y)在曲线y2=4x上,所以y2=4(4-x),即y2=16-4x.答案:C3.已知直线l1:x+my+5=0和直线l2:x+ny+p=0,则l1、l2关于y轴对称的充要条件是A.=B.p=-5C.m=-n且p=-5D.=-且p=-5解析:直线l1关于y轴对称的直线方程为(-x)+my+5=0,即x-my-5=0,与l2比较,∴m=-n且p=-5.反之亦验证成立.答案:C4.点A(4,5)关于直线l的对称点为B(-2,7),则l的方程为____________.解析:对称轴是以两对称点为端点的线段的中垂线.答案:3x-y+3=05.设直线x+4y-5=0的倾斜角为θ,则它关于直线y-3=0对称的直线的倾斜角是____________.解析:数形结合.答案:π-θ●典例剖析【例1】 求直线a:2x+y-4=0关于直线l:3x+4y-1=0对称的直线b的方程.剖析:由平面几何知识可知若直线a、b关于直线l对称,它们具有下列几何性质:(1)若a、b相交,则l是a、b交角的平分线;(2)若点A在直线a上,那么A关于直线l的对称点B一定在直线b上,这时AB⊥l,并且AB的中点D在l上;(3)a以l为轴旋转180°,一定与b重合.使用这些性质,可以找出直线b的方程.解此题的方法很多,总的来说有两类:一类是找出确定直线方程的两个条件,选择适当的直线方程的形式,求出直线方程;另一类是直接由轨迹求方程.解得a与l的交点E(3,-2),E点也在b上.解:由 2x+y-4=0,3x+4y-1=0, 方法一:设直线b的斜率为k,又知直线a的斜率为-2,直线l的斜率为-.则=.解得k=-.代入点斜式得直线b的方程为y-(-2)=-(x-3),即2x+11y+16=0.方法二:在直线a:2x+y-4=0上找一点A(2,0),设点A关于直线l的对称点B的坐标为(x0,y0),由3×+4×-1=0,=,解得B(,-).由两点式得直线b的方程为=,即2x+11y+16=0.方法三:设直线b上的动点P(x,y)关于l:3x+4y-1=0的对称点Q(x0,y0),则有3×+4×-1=0,=.解得x0=,y0=.Q(x0,y0)在直线a:2x+y-4=0上,则2×+-4=0,化简得2x+11y+16=0是所求直线b的方程.方法四:设直线b上的动点P(x,y),直线a上的点Q(x0,4-2x0),且P、Q两点关于直线l:3x+4y-1=0对称,则有=,=.消去x0,得2x+11y+16=0或2x+y-4=0(舍).评述:本题体现了求直线方程的两种不同的途径,方法一与方法二,除了点E外,分别找出确定直线位置的另一个条件:斜率或另一个点,然后用点斜式或两点式求出方程,方法三与方法四是利用直线上动点的几何性质,直接由轨迹求方程,在使用这种方法时,要注意区分动点坐标及参数,本题综合性较强,只有对坐标法有较深刻的理解,同时有较强的数形结合能力才能较好地完成此题.【例2】 光线从点A(-3,4)发出,经过x轴反射,再经过y轴反射,光线经过点 B(-2,6),求射入y轴后的反射线的方程.剖析:由物理中光学知识知,入射线和反射线关于法线对称.解:∵A(-3,4)关于x轴的对称点A1(-3,-4)在经x轴反射的光线上,同样A1(-3,-4)关于y轴的对称点A2(3,-4)在经过射入y轴的反射线上,∴k==-2.故所求直线方程为y-6=-2(x+2),即2x+y-2=0.评述:注意知识间的相互联系及学科间的相互渗透.【例3】 已知点M(3,5),在直线l:x-2y+2=0和y轴上各找一点P和Q,使△MPQ的周长最小.剖析:如下图,作点M关于直线l的对称点M1,再作点M关于y轴的对称点M2,连结MM1、MM2,连线MM1、MM2与l及y轴交于P与Q两点,由轴对称及平面几何知识,可知这样得到的△MPQ的周长最小.解:由点M(3,5)及直线l,可求得点M关于l的对称点M1(5,1).同样容易求得点M关于y轴的对称点M2(-3,5).据M1及M2两点可得到直线M1M2的方程为x+2y-7=0.得交点P(,).令x=0,得到M1M2与y轴的交点Q(0,).解方程组x+2y-7=0,x-2y+2=0,故点P(,)、Q(0,)即为所求.评述:恰当地利用平面几何的知识对解题能起到事半功倍的效果.深化拓展 恰当地利用平面几何的知识解题.不妨再试试这个小题:已知点A(1,3)、B(5,2),在x轴上找一点P,使得|PA|+|PB|最小,则最小值为____________,P点的坐标为____________.答案: (,0)●闯关训练夯实基础1.(2004年全国卷Ⅱ,4)已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的方程为A.(x+1)2+y2=1 B.x2+y2=1C.x2+(y+1)2=1 D.x2+(y-1)2=1解析:由M(x,y)关于y=-x的对称点为(-y,-x),即得x2+(y+1)2=1.答案:C2.与直线x+2y-1=0关于点(1,-1)对称的直线方程为A.2x-y-5=0 B.x+2y-3=0C.x+2y+3=0 D.2x-y-1=0解析:将x+2y-1=0中的x、y分别代以2-x,-2-y,得(2-x)+2(-2-y)-1=0,即x+2y+3=0.故选C.答案:C3.两直线y=x和x=1关于直线l对称,直线l的方程是____________.解析:l上的点为到两直线y=x与x=1距离相等的点的集合,即=|x-1|,化简得x+y-2=0或3x-y-2=0.答案:x+y-2=0或3x-y-2=04.直线2x-y-4=0上有一点P,它与两定点A(4,-1)、B(3,4)的距离之差最大,则P点的坐标是____________.解析:易知A(4,-1)、B(3,4)在直线l:2x-y-4=0的两侧.作A关于直线l的对称点A1(0,1),当A1、B、P共线时距离之差最大.答案:(5,6)5.已知△ABC的一个顶点A(-1,-4),∠B、∠C的平分线所在直线的方程分别为l1:y+1=0,l2:x+y+1=0,求边BC所在直线的方程.解:设点A(-1,-4)关于直线y+1=0的对称点为A′(x1,y1),则x1=-1,y1=2×(-1)-(-4)=2,即A′(-1,2).在直线BC上,再设点A(-1,-4)关于l2:x+y+1=0的对称点为A″(x2,y2),则有×(-1)=-1,++1=0.解得 x2=3,y2=0,即A″(3,0)也在直线BC上,由直线方程的两点式得=,即x+2y-3=0为边BC所在直线的方程.培养能力6.求函数y=+的最小值.解:因为y=+,所以函数y是x轴上的点P(x,0)与两定点A(0,3)、B(4,3)距离之和.y的最小值就是|PA|+|PB|的最小值.由平面几何知识可知,若A关于x轴的对称点为A ′(0,-3),则|PA|+|PB|的最小值等于|A′B|,即=4.所以ymin=4.7.若抛物线y=2x2上的两点A(x1,y1)、B(x2,y2)关于直线y=x+m对称且x1x2=-,求m的值.解:设直线AB的方程为y=-x+b,代入y=2x2得2x2+x-b=0,∴x1+x2=-,x1x2==-.∴b=1,即AB的方程为y=-x+1.设AB的中点为M(x0,y0),则x0==-,代入y0=-x0+1,得y0=.又M(-,)在y=x+m上,∴=-+m.∴m=.8.(文)直线y=2x是△ABC中∠C的平分线所在的直线,若A、B坐标分别为A(-4,2)、B(3,1),求点C的坐标,并判断△ABC的形状.解:由题意,点A关于直线y=2x的对称点A′在BC所在直线上,设A′点坐标为(x1,y1),则x1、y1满足=-,即x1=-2y1. ①=2·,即2x1-y1-10=0. ②解①②两式组成的方程组,得x1=4,y1=-2.∴BC所在直线方程为=,即3x+y-10=0.得解方程组 3x+y-10=0, x=2,y=2x, 。

卡西欧5800p使用说明书资料.ppt
锂金属电池界面稳定化-全面剖析.docx
SG3525斩控式单相交流调压电路设计要点.doc
话剧《枕头人》剧本.docx
重视家风建设全面从严治党治家应成为领导干部必修课PPT模板.pptx
黄渤海区拖网渔具综合调查分析.docx
2024年一级造价工程师考试《建设工程技术与计量(交通运输工程)-公路篇》真题及答案.docx
【课件】Unit+3+Reading+and+Thinking公开课课件人教版(2019)必修第一册.pptx
嵌入式软件开发流程566841551.doc
生命密码PPT课件.ppt
爱与责任-师德之魂.ppt
制冷空调装置自动控制技术讲义.ppt


