好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

西安市重点中学2025年高三数学第一学期期末监测模拟试题含解析.doc

20页
  • 卖家[上传人]:东***
  • 文档编号:594033467
  • 上传时间:2024-10-15
  • 文档格式:DOC
  • 文档大小:2.61MB
  • / 20 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 西安市重点中学2025年高三数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号回答非选择题时,将答案写在答题卡上,写在本试卷上无效3.考试结束后,将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于( )A. B. C. D.2.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=( )A. B. C. D.3.已知数列满足,且 ,则数列的通项公式为( )A. B. C. D.4.函数的大致图象是A. B. C. D.5.设则以线段为直径的圆的方程是( )A. B.C. D.6.已知四棱锥的底面为矩形,底面,点段上,以为直径的圆过点.若,则的面积的最小值为( )A.9 B.7 C. D.7.已知平面和直线a,b,则下列命题正确的是( )A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则8.关于函数,下列说法正确的是( )A.函数的定义域为B.函数一个递增区间为C.函数的图像关于直线对称D.将函数图像向左平移个单位可得函数的图像9.已知函数的导函数为,记,,…,N. 若,则 ( )A. B. C. D.10.二项式展开式中,项的系数为( )A. B. C. D.11.若的展开式中的系数为-45,则实数的值为(  )A. B.2 C. D.12.已知变量,满足不等式组,则的最小值为( )A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

      13.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.14.如图,在△ABC中,E为边AC上一点,且,P为BE上一点,且满足,则的最小值为______.15.若,则______.16.在中,已知,,是边的垂直平分线上的一点,则__________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.18.(12分)若函数在处有极值,且,则称为函数的“F点”.(1)设函数().①当时,求函数的极值;②若函数存在“F点”,求k的值;(2)已知函数(a,b,,)存在两个不相等的“F点”,,且,求a的取值范围.19.(12分)已知动圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.20.(12分)已知函数()在定义域内有两个不同的极值点.(1)求实数的取值范围;(2)若有两个不同的极值点,,且,若不等式恒成立.求正实数的取值范围.21.(12分)已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点(1)求椭圆的方程;(2)过点与轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.22.(10分)如图,直角三角形所在的平面与半圆弧所在平面相交于,,,分别为,的中点, 是上异于,的点, .(1)证明:平面平面;(2)若点为半圆弧上的一个三等分点(靠近点)求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。

      在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.2、C【解析】设,则,,,设,根据化简得到,得到答案.【详解】设,则,,,则,设,则,两式相减得到:,,,即,, ,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.3、D【解析】试题分析:因为,所以,即,所以数列是以为首项,公比为的等比数列,所以,即,所以数列的通项公式是,故选D.考点:数列的通项公式.4、A【解析】利用函数的对称性及函数值的符号即可作出判断.【详解】由题意可知函数为奇函数,可排除B选项;当时,,可排除D选项;当时,,当时,,即,可排除C选项,故选:A【点睛】本题考查了函数图象的判断,函数对称性的应用,属于中档题.5、A【解析】计算的中点坐标为,圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.6、C【解析】根据线面垂直的性质以及线面垂直的判定,根据勾股定理,得到之间的等量关系,再用表示出的面积,利用均值不等式即可容易求得.【详解】设,,则.因为平面,平面,所以.又,,所以平面,则.易知,.在中,,即,化简得.在中,,.所以.因为,当且仅当,时等号成立,所以.故选:C.【点睛】本题考查空间几何体的线面位置关系及基本不等式的应用,考查空间想象能力以及数形结合思想,涉及线面垂直的判定和性质,属中档题.7、C【解析】根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.8、B【解析】化简到,根据定义域排除,计算单调性知正确,得到答案.【详解】,故函数的定义域为,故错误;当时,,函数单调递增,故正确;当,关于的对称的直线为不在定义域内,故错误.平移得到的函数定义域为,故不可能为,错误.故选:.【点睛】本题考查了三角恒等变换,三角函数单调性,定义域,对称,三角函数平移,意在考查学生的综合应用能力.9、D【解析】通过计算,可得,最后计算可得结果.【详解】由题可知:所以所以猜想可知:由所以所以故选:D【点睛】本题考查导数的计算以及不完全归纳法的应用,选择题、填空题可以使用取特殊值,归纳猜想等方法的使用,属中档题.10、D【解析】写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.11、D【解析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得的值.【详解】∵所以展开式中的系数为,∴解得.故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题.12、B【解析】先根据约束条件画出可行域,再利用几何意义求最值.【详解】解:由变量,满足不等式组,画出相应图形如下:可知点,,在处有最小值,最小值为.故选:B.【点睛】本题主要考查简单的线性规划,运用了数形结合的方法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

      13、2【解析】由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.14、【解析】试题分析:根据题意有,因为三点共线,所以有,从而有,所以的最小值是.考点:向量的运算,基本不等式.【方法点睛】该题考查的是有关应用基本不等式求最值的问题,属于中档题目,在解题的过程中,关键步骤在于对题中条件的转化,根据三点共线,结合向量的性质可知,从而等价于已知两个正数的整式形式和为定值,求分式形式和的最值的问题,两式乘积,最后应用基本不等式求得结果,最后再加,得出最后的答案.15、【解析】直接利用关系式求出函数的被积函数的原函数,进一步求出的值.【详解】解:若,则,即,所以.故答案为:.【点睛】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题.16、【解析】作出图形,设点为线段的中点,可得出且,进而可计算出的值.【详解】设点为线段的中点,则,,,.故答案为:.【点睛】本题考查平面向量数量积的计算,涉及平面向量数量积运算律的应用,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题:共70分。

      解答应写出文字说明、证明过程或演算步骤17、(1);(2)极小值;(3)函数的零点个数为.【解析】(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.18、(1)①极小值为1,无极大值.②实数k的值为1.(2)【解析】(1)①将代入可得,求导讨论函数单调性,即得极值;②设是函数的一个“F点”(),即是的零点,那么由导数可知,且,可得,根据可得,设,由的单调性可得,即得.(2)方法一:先求的导数,存在两个不相等的“F点”,,可以由和韦达定理表示出,的关系,再由,可得的关系式,根据已知解即得.方法二:由函数存在不相等的两个“F点”和,可知,是关于x的方程组的两个相异实数根,由得,分两种情况:是函数一个“F点”,不是函数一个“F点”,进行讨论即得.【详解】解:(1)①当时, (),则有(),令得,列表如下:x10极小值故函数在处取得极小值,极小值为1,无极大值.②设是函数的一个“F点”().(),是函数的零点.,由,得,,由,得,即.设,则,所以函数在上单调增,注意到,所以方程存在唯一实根1,所以,得,根据①知,时,是函数的极小值点,所以1是函数的“F点”.综上,得实数k的值为1.(2)由(a,b,,),可得().又函数存在不相等的两个“F点”和,,是关于x的方程()的两个相异实数根.又,,,即,从而,,即..,,解得.所以,实数a的取值范围为.(2)(解法2)因为( a,b,,)所以().又因为函数存在不相。

      点击阅读更多内容
      相关文档
      高一历史上学期期末考前必刷卷统编版03考试版A4含答案.docx 高中英语考试各题型突破攻略听力篇高一高二高三的都要看.docx 高一历史上学期期末考前必刷卷统编版01考试版A3含答案.docx 高中英语考试各题型突破攻略语法填空篇高一高二高三的都要看.docx 高一历史上学期期末考前必刷卷统编版02考试版A3含答案.docx 高中英语考试各题型突破攻略完形填空篇高一高二高三的都要看.docx 高中英语考试各题型突破攻略作文篇高一高二高三的都要看.docx 高考政治如何规范化答题?.docx 高一历史上学期期末考前必刷卷统编版03考试版A3含答案.docx 高一历史上学期期末考前必刷卷统编版02考试版A4含答案.docx 高一历史上学期期末测试卷01统编版中外历史纲要上129课含答案.docx 日历表2028年日历中文版纵向排版周一开始带周数带农历带节假日调休安排1.docx 日历表2028年日历中文版横向排版周一开始带农历带节假日调休安排1.docx 八年级数学北师大版上册课时练第7章《3 平行线的判定》含答案解析.docx 日历表2029年日历中文版横向排版周一开始带周数带农历带节假日调休安排1.docx 日历表2028年日历中文版纵向排版周一开始带周数带农历.docx 人教版二年级数学下册同步测试-有余数的除法含答案解析3含答案.docx 日历表2028年日历中文版横向排版周一开始带农历1.docx 人教版二年级数学下册同步测试-总复习含答案解析-人教新课标含答案.docx 日历表2028年日历中文版横向排版周一开始带周数带农历1.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.