
六年级数学上下两册全部知识要点整理汇总.pdf
16页3 个老师六年级上下两册全部知识要点整理汇总 第一单元位置 (1)用数据表示位置的方法: 先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就 是数据中的第二个数第几行,第几列) 第二单元分数乘法 (1)分数乘以整数: 整数与分子的乘积作分子,分母不变能约分的可以先约分,再计算) (2)分数乘以分数: 用分子乘以分子的积作分子,分母乘以分母的积做分子能约分的可以先约分,再计算) (3)分数乘加、乘减混合运算顺序: 、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计 算 、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法 、在有括号的算式里,要先算括号里面的,再算括号外面的 (4)分数乘法运算定律 交换两个因数的位置,积不变,这叫做乘法交换律 ab=b a 先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律 (a b)c=a ( b c) 两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配 律 (a+b) c=ac+b c 两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配 律。
(a-b) c=ac-b c 5.. 25 4=100 125 8=1000 25 8=200 125 4=500 (5) 规律(比较大小要用到): 1、一个数(0 除外)乘以大于1 的数,积大于这个数; 2、一个数(0 除外)乘以小于1 的数( 0 除外),积小于这个数; 3、一个数(0 除外)乘以1,积等于这个数第一个数 (6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数 (7)求一个数的几倍,一个数几倍; 求一个数的几分之几是多少,一个数几分之几 (8)倒数 概念:乘积是1 的两个数互为倒数 强调 :乘积必须是1 只能是两个数 倒数是表示两个数的关系,他不是一个数 第三单元分数除法 (1)乘法:因数因数=积 除法:积一个因数=另一个因数 (2)分数除法的意义: 分数除法与整数除法一样,表示已知两个因数的积和其中一个因数,求另一个因数的运算 ( 3)分数除法的方法: 甲数除以乙数(0 除外),等于甲数乘以乙数的倒数 (4)规律(比较大小要用到): 1、当除数大于1,商小于被除数; 2、当除数小于1(不等于0),商大于被除数; 3、当除数等于1,商等于被除数。
(5)“【】”叫做中括号一个算式里,如果既有小括号,又有中括号,要先算小括号 里面的 (6)解决 已知一个数的几分之几是多少,求这个数的问题: 1列方程的方法 用方程解应用题格式: 1、解写“解”字,打冒号 1、设设未知数,根据题目设未知数,问什么设什么 2、找找等量关系) 3、列根据等量关系列方程,并解方程) 4、答 2列除法算式 分析数量关系 一个数几几= 具体量 单位” 1“的量几几= 具体量 单位” 1“的量= 具体量几几 列式计算 (7)比的概念:两个数相除又叫做两个数的比 (8)在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项比的前 项除以后项所得的商,叫做比值 例如15 :10 = 15 10= 3 2 (比值通常用分数表示,也可以用小数或整数表示) 前项比号后项比值 注意: 1、根据比与除法、分数的关系,可以理解比的后项不能为0; 2、在体育比赛中出现两队的分是2: 0.,1:0 等,这只是一种记分的形式,不表示两个数 相除的关系 (9)比的基本性质:比的前项和后项同事乘以或除以相同的数(0 除外),比值不变 (10 )根据比的性质可以把比值化成最简整数比。
当一个比的前后项不是整数时,把比的 前后项扩大成整数在化成最简整数比 (11 )比的应用:前项+后项 =总共的份数 总共的具体量前项总共的份数= 前项的物体数 总共的具体量后项总共的份数= 后项的物体数 前项的物体数 前项总共的份数= 总共的具体量 后项的物体数后项总共的物体量= 总共的具体量 第四单元圆 (1)把一个圆重合对折几次就会出现一些折痕,这些折痕相交于圆中心的一点,这点叫做 圆心(固定的点)一般用字母O 表示连接圆心和圆上任意一点的线段叫做半径,一般 用字母r 表示通过圆心并且两端都在圆上的线段叫做直径,一般用字母d 表示 (2)在同一个圆里,所有的半径的长度都相等,所有的直径的长度都相等 (3)在同一个圆里,直径的长度是半径的2 倍,半径长度是直径的一半d=2r r=1/2d (4)圆是轴对称图形直径所在的直线是圆的对称轴,圆的对称轴有无数条 (5)任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率,用字母 (pai )表示它是一个无限不循环小数,=3.1415926535------ 但在实际应用中一般只取它 的近似值,即=3.14 如果用C 表示圆的周长,就有C= d 或C=2 r (6)圆的面积公式:圆的面积= r r = r2 强调:r2 表示 rr 。
长度单位与面积单位的统一 计算时,可以不写面积公式 (7)环形面积:大圆面积小圆面积(或外圆面积内圆面积) (8)圆心角:顶点在圆心的角叫做圆心角圆周角360 第五单元百分数 (1)概念:像上面这样的数,如18%、50%、64.2%----- 叫做百分数 百分数表示一个数是另一个数的百分之几百分数也叫做百分率后百分比 百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示如: 百分之九十写作: 90% (2)百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的 读法来读 (3)百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%” 来表示 (4)百分数和分数的区别:百分数只能表示两个数的比的关系,而分数不仅可以表示数的 关系,还可以表示成一个具体的量,可以带上单位名称 (5)百分数和小数及分数的互化 小数化成百分数:把小数点向右移动两位再在数的后面加上百分号 百分数化成小数:把百分号去掉,同时把小数点向左移动两位 百分数化成分数:化成分母是100 的分数,能约分的要约分如果百分数分子是小数,要先 根据分数的基本性质,把百分数改写成分数是整数的分数,再约分。
分数化成百分数有两种方法:一种是根据分数的基本性质,把分数的分母化成为100 的分数, 另一种是先把分数化成小数,在利用小数化百分数的方法利用第二种时,除不尽,通常 保留三位小数) (6)用百分数解决问题: 什么的百分率= 什么的数量/ 总共的数量100% (7)解答百分数应用题时,要注意弄清楚谁和谁比,比的标准不同,单位“1”也不同,解 题时要注意找准把谁看单位“1” (8)由于比的标准不同,甲比乙多百分之几,已并不比甲少相同的百分数 (9)在实际生活中,人们常用“增加百分之几”、“减少百分之几”、“节约百分之几” ----来表示增加、减少的幅度占谁的把谁看成单位“1”) 增加百分之几表示增加的占原来的百分之几 减少的百分之几表示减少的占计划的百分之几 节约百分之几表示节约的占原来的百分之几 (9)税收主要分为消费税、增值税、营业税和个人所得税等几类缴纳的税款叫做应纳税 额,应纳税额与各种收入(销售额、营业额----)的比率叫做税率 (10 )在银行存款的方式有多种,如活期、 整存整取、零存整取等存入银行的钱叫做本金; 取款时银行多付的钱叫做利息,利息与本金的比值叫做利率 (11 )国家规定,存款所得的利息要按20%的税率纳税,这个税叫利息税”。
我们从银行 取款时得到的利息都是税后利息国债的利息不纳税 (12 )利息 =本金利率时间 (13 )利率由银行决定,在我国我由中国人民银行统一规定,利率的高低反映一个时期经济 发展状况和消费状况根据国家的经济发展的变化,银行存款的利率有时也会有所调整 第六单元统计 (1)条形统计图的的特点:条形统计图可以清楚地看出数量的多少 折线统计图的特点:折线统计图不仅可以看出数量的多少而且可以看出数量的增减变化 情况 (2)用整个圆的面积表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数, 这样的统计图我们称为扇形统计图特点: 通过扇形统计图我们可以很清楚地表示出各部分 数量同总数之间的关系 第七单元数学广角 这里解决问题可以用方程的方法来解设的那个未知数尽量是少的) 用方程解应用题格式: 1、解写“解”字,打冒号 5、设设未知数,根据题目设未知数,问什么设什么 6、找找等量关系) 7、列根据等量关系列方程,并解方程) 8、答 六年级下册 下面是我的复习资料 1 每份数份数总数 总数每份数份数 总数份数每份数 2 1 倍数倍数几倍数 几倍数1 倍数倍数 几倍数倍数1 倍数 3 速度时间路程 路程速度时间 路程时间速度 4 单价数量总价 总价单价数量 总价数量单价 5 工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率 6 加数加数和 和一个加数另一个加数 7 被减数减数差 被减数差减数 差减数被减数 8 因数因数积 积一个因数另一个因数 9 被除数除数商 被除数商除数 商除数被除数 小学数学图形计算公式 1 正方形 C 周长S 面积a 边长 周长边长4 C=4a 面积 =边长边长 S=a a 2 正方体 V:体积a:棱长 表面积 =棱长棱长6 S 表=a a 6 体积 =棱长棱长棱长 V=a a a 3 长方形 C 周长S 面积a 边长 周长 =(长+宽 ) 2 C=2(a+b) 面积 =长宽 S=ab 4 长方体 V:体积s:面积a:长 b: 宽h:高 (1)表面积 (长宽+长高 +宽高)2 S=2(ab+ah+bh) (2)体积 =长宽高 V=abh 5 三角形 s 面积a 底 h 高 面积 =底高2 s=ah 2 三角形高=面积 2底 三角形底=面积 2高 6 平行四边形 s 面积a 底 h 高 面积 =底高 s=ah 7 梯形 s 面积a 上底b 下底h 高 面积 =(上底 +下底 )高 2 s=(a+b) h2 8 圆形 S 面积C 周长d=直径r= 半径 (1)周长 =直径=2半径 C= d=2 r (2)面积 =半径半径 9 圆柱体 v:体积h: 高 s;底面积r: 底面半径c:底面周长 (1)侧面积 =底面周长高 (2)表面积 =侧面积 +底面积2 (3)体积 =底面积高 (4)体积侧面积2半径 10 圆锥体 v:体积h: 高 s;底面积r: 底面半径 体积 =底面积高3 总数总份数平均数 和差问题的公式 (和差 ) 2大数 (和差 ) 2小数 和倍问题 和 (倍数 1)小数 小数倍数大数 (或者和小数大数) 差倍问题 差 (倍数 1)小数 小数倍数大数 (或小数差大数)小学奥数公式 和差问题的公式 (和差 ) 2大数(和差 ) 2小数 和倍问题的公式 和 (倍数 1)小数小数倍数大数(或者和小数大数) 差倍问题的公式 差 (倍数 1)小数小数倍数大数(或小数差大数) 植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么 : 株数段数1全长株距1 全长株距(株数 1) 株距全长(株数 1) 如果在非封闭线路的一端要植树,另一端不要植树,那么 : 株数段数全长株距 全长株距株数 株距全长株数 如果在非封闭线路的两端都不要植树,那么 : 株数段数1全长株距1 全长株距(株数 1) 株距全长(株数 1) 2 封闭线路上的植树问题的数量关系如下 株数段数全长株距 全长株距株数 株距全长株数 盈亏问题的公式 (盈亏 )两次分配量之差参加分配的份数 (大盈小盈)两次分配量之差参加分配的份数。












