
湖师范大学附属中学2025年数学高一上期末经典模拟试题含解析.doc
14页湖师范大学附属中学2025年数学高一上期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度2.设,,,则()A. B.C. D.3.甲、乙二人参加某体育项目训练,近期的八次测试得分情况如图,则下列结论正确的是()A.甲得分的极差大于乙得分的极差 B.甲得分的75%分位数大于乙得分的75%分位数C.甲得分的平均数小于乙得分的平均数 D.甲得分的标准差小于乙得分的标准差4.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.5.已知集合,,若,则a的取值范围是 A B.C. D.6.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.7.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.88.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.如图,网格纸上小正方形的边长为,粗实线画出的是某“堑堵”的三视图,则该“堑堵”的侧面积为()A.48 B.42C.36 D.309.若,,则的值为 A. B.C. D.10.下列命题中,错误的是( )A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则二、填空题:本大题共6小题,每小题5分,共30分。
11.在平面直角坐标系中,已知点A在单位圆上且位于第三象限,点A的纵坐标为,现将点A沿单位圆逆时针运动到点B,所经过的弧长为,则点B的坐标为___________.12.若,,,则的最小值为______.13.已知扇形的面积为4,圆心角为2弧度,则该扇形的弧长为_________14.已知函数,若关于的方程在上有个不相等的实数根,则实数的取值范围是___________.15.定义在上的奇函数满足:对于任意有,若,则的值为__________.16.函数的最小值为________三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的上界已知函数当,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;若函数在上是以3为上界的有界函数,求实数a的取值范围18.根据下列条件,求直线的方程(1) 求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2) 过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.19.如图,在中,,,点在的延长线上,点是边上的一点,且存在非零实数,使.(Ⅰ)求与的数量积;(Ⅱ)求与的数量积.20.已知函数的部分图象如图所示(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,求的值域21.计算或化简:(1);(2)参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B2、C【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小.【详解】因为,即,,即,,即,所以,故选:C.3、B【解析】根据图表数据特征进行判断即可得解.【详解】乙组数据最大值29,最小值5,极差24,甲组最大值小于29,最小值大于5,所以A选项说法错误;甲得分的75%分位数是20,,乙得分的75%分位数17,所以B选项说法正确;甲组具体数据不易看出,不能判断C选项;乙组数据更集中,标准差更小,所以D选项错误故选:B4、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.5、D【解析】化简集合A,根据,得出且,从而求a的取值范围,得到答案详解】由题意,集合或,;若,则且,解得,所以实数的取值范围为故选D【点睛】本题主要考查了对数函数的运算性质,以及集合的运算问题,其中解答中正确求解集合A,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B7、B【解析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B8、C【解析】由三视图可知该“堑堵”的高为,其底面是直角边为,斜边为的三角形,从而可求出其侧面积.【详解】解:由三视图易得该“堑堵”的高为,其底面是直角边为,斜边为的三角形,故其侧面积为.故选:C.9、A【解析】由两角差的正切公式展开计算可得【详解】解:,,则,故选A【点睛】本题考查两角差的正切公式:,对应还应该掌握两角和的正切公式,及正弦余弦公式.本题是基础10、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。
11、【解析】设点A是角终边与单位圆的交点,根据三角函数的定义及平方关系求出,,再利用诱导公式求出,即可得出答案.【详解】解:设点A是角的终边与单位圆的交点,因为点A在单位圆上且位于第三象限,点A的纵坐标为,所以,,因为点A沿单位圆逆时针运动到点B,所经过的弧长为,所以,所以点的横坐标为,纵坐标为,即点B的坐标为.故答案为:.12、【解析】利用基本不等式求出即可.【详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【点睛】本题考查了基本不等式的应用,属于基础题.13、4【解析】设扇形半径为,弧长为,则,解得考点:角的概念,弧度的概念14、【解析】数形结合,由条件得在上有个不相等的实数根,结合图象分析根的个数列不等式求解即可.【详解】作出函数图象如图所示:由,得,所以,且,若,即在上有个不相等的实数根,则 或,解得.故答案为:【点睛】方法点睛:判定函数的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令,将函数的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.15、【解析】由可得,则可化简,利用可得,由是在上的奇函数可得,由此【详解】由题,因为,所以,由,则,则,因为,令,则,所以,因为是在上的奇函数,所以,所以,故答案:0【点睛】本题考查函数奇偶性、周期性的应用,考查由正切值求正、余弦值16、##【解析】用辅助角公式将函数整理成的形式,即可求出最小值【详解】,,所以最小值为故答案为:三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1)值域为(3,+∞);不是有界函数,详见解析(2)【解析】(1)当a=1时,f(x)=1+因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞),故不存在常数M>0,使|f(x)|≤M成立,所以函数f(x)在(-∞,0)上不是有界函数.(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立.-3≤f(x)≤3,-4-≤a·≤2-,所以-4·2x-≤a≤2·2x-在[0,+∞)上恒成立.所以≤a≤,设2x=t,h(t)=-4t-,p(t)=2t-,由x∈[0,+∞)得t≥1,设1≤t1












