好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

第二章半导体二极管及其基本电路.docx

16页
  • 卖家[上传人]:人***
  • 文档编号:497842876
  • 上传时间:2023-06-01
  • 文档格式:DOCX
  • 文档大小:202.77KB
  • / 16 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 第二章半导体二极管及其基本电路学习要求:(1) 了解半导体器件中扩散与漂移的概念、PN结形成的原理2) 掌握半导体二极管的单向导电特性和伏安特性3) 掌握二极管基本电路及其分析方法 4)熟悉硅稳压管的稳压原理和主要参数第一节 半导体的基本知识多数现代电子器件是由性能介于导体与绝缘体之间的半导体材料制成的为了从电路的 观点理解这些器件的性能,首先必须从物理的角度了解它们是如何工作的一、 半导体材料从导电性能上看,物质材料可分为三大类:导体:电阻率P < 10-4 Q・cm绝缘体:电阻率P > 109 Q・cm半导体:电阻率P介于前两者之间目前制造半导体器件的材料用得最多的有:硅和锗两种二、 本征半导体及本征激发1、 本征半导体没有杂质和缺陷的半导体单晶,叫做本征半导体2、 本征激发当温度升高时,电子吸收能量摆脱共价键而形成一对电子和空穴的过程,称为本征激发三、 杂质半导体在本征半导体中掺入微量的杂质,就会使半导体的导电性能发生显著的变化因掺入 杂质不同,杂质半导体可分为空穴(P)型半导体和电子(N)型半导体两大类1、P型半导体在本征半导体中掺入少量的三价元素杂质就形成P型半导体,P型半导体的多数载流子2、N 型半导体在本征半导体中掺入少量的五价元素杂质就形成N型半导体。

      N型半导体的多数载流子 是电子,少数载流子是空穴图2.2第二节PN结的形成及特性一、PN结及其形成过程在杂质半导体中,正负电荷数是相等的,它们的作用相互抵消,因此保持电中性1、 载流子的浓度差产生的多子的扩散运动在P型半导体和N型半导体结合后,在它们的交界处就出现了电子和空穴的浓度差,N 型区内的电子很多而空穴很少,P型区内的空穴很多而电子很少,这样电子和空穴都要从浓 度高的地方向浓度低的地方扩散,因此,有些电子要从N型区向P型区扩散,也有一些空穴 要从P型区向N型区扩散2、 电子和空穴的复合形成了空间电荷区电子和空穴带有相反的电荷,它们在扩散过程中要产生复合(中和),结果使P区和N 区中原来的电中性被破坏P区失去空穴留下带负电的离子,N区失去电子留下带正电的离 子,这些离子因物质结构的关系,它们不能移动,因此称为空间电荷,它们集中在P区和 N区的交界面附近,形成了一个很薄的空间电荷区,这就是所谓的PN结3、 空间电荷区产生的内电场E又阻止多子的扩散运动在空间电荷区后,由于正负电荷之间的相互作用,在空间电荷区中形成一个电场,其方向从 带正电的N区指向带负电的P区,由于该电场是由载流子扩散后在半导体内部形成的,故称 为内电场。

      因为内电场的方向与电子的扩散方向相同,与空穴的扩散方向相反,所以它是阻 止载流子的扩散运动的空间;P N©B ㊉掩0 0 , • 0P |电荷| Nped㊉扭忑图 2.3 ! E !综上所述,PN结中存在着两种载流子的运动一种是多子克服电场的阻力的扩散运动; 另一种是少子在内电场的作用下产生的漂移运动因此,只有当扩散运动与漂移运动达到动 态平衡时,空间电荷区的宽度和内建电场才能相对稳定由于两种运动产生的电流方向相 反,因而在无外电场或其他因素激励时,PN结中无宏观电流二、PN结的单向导电性PN 结在外加电压的作用下,动态平衡将被打破,并显示出其单向导电的特性1、外加正向电压当 PN 结外加正向电压时,外电场与内电场的方向相反,内电场变弱,结果使空间电荷 区(PN结)变窄同时空间电荷区中载流子的浓度增加,电阻变小这时的外加电压称为 正向电压或正向偏置电压用V表示F在V作用下,通过PN结的电流称为正向电流I外加正向电压的电路如图所示F F卩Ool sila0 0 0 s0 o ©0 0 Q

      这时的外加电压称为 反向电压或反向偏置电压用V表示在V作用下,通过PN结的电流称为反向电流I或称为R R R反向饱和电流Is如下图所示Q00O 0 0100 0000 e •¥ O000 D- o a p 0O©0 n f d ■0.©®© ㊉ Q 0 o Q& 000© 0000:耳十比I i图2.53、PN 结的伏安特性根据理论分析,PN结的伏安特性可以表达为:式中iD为通过PN结的 电流,vD为PN结两端的外加电压;Vt为温度的电压当S=kT/q=T/11600=0.026V,其中k为 波尔慈曼常数(1.38X 10-23J/K), T为绝对温度(300K), q为电子电荷(1.6X10-19C); e为自然对数的底;1$为反向饱和电流第三节 半导体二极管7 !\ '汽丄沙心•一、半导体二极管的结构U;腋图2.7匚极管的符号上越手痢更卜砂 诈话片唤我i境半导体二极管按其结构的不同可分为点接触型和面接触型两类点接触型二极管是由一根很细的金属触丝(如三价元素铝)和一块半导体(如锗)的表面 接触,然后在正方向通过很大的瞬时电流,使触丝和半导体牢固地熔接在一起,三价金属与 锗结合构成PN结,并做出相应的电极引线,外加管壳密封而成,如图2.7所示。

      由于点接 触型二极管金属丝很细,形成的PN结面积很小,所以极间电容很小,同时,也不能承受 高的反向电压和大的电流这种类型的管子适于做高频检波和脉冲数字电路里的开关元件 也可用来作小电流整流如2APl是点接触型锗二极管,最大整流电流为16mA,最高工 作频率为150MHz面接触型或称面结型二极管的PN结是用合金法或扩散法做成的,其结构如图2.7所示 由于这种二极管的PN结面积大,可承受较大的电流,但极间电容也大这类器件适用于整 流,而不宜用于高频电路中如2CPl为面接触型硅二极管,最大整流电流为4OOmA,最高 工作频率只有3kHz图2.7中的硅工艺平面型二极管结构图,是集成电路中常见的一种形式代表二极管 的符号也在图2.7中示出部分二极管实物如图2.8所示二、极管的伏安特性实际的二极管的V-I特性如图2.9所示由图可以看出,二极管的V-I特性和PN结的 V-I特性(图2.6)基本上是相同的下面对二极管V-I特性分三部分加以说明:1、 正向特性:二极管外加正向偏置电压时的V-1特性对应于图2.9 (b)的第①段为正向特性,此时加于二极管的正向电压只有零点几伏, 但相对来说流过管子的电流却很大,因此管子呈现的正向电阻很小。

      但是,在正向特性的起 始部分,由于正向电压较小,外电场还不足以克服PN结的内电场,因而这时的正向电流几 乎为零,二极管呈现出一个大电阻,好像有一个门坎硅管的门坎电压vh(又称死区电压) th约为0・5V,锗管的Vh约为0・IV,当正向电压大于V时,内电场大为削弱,电流因而迅 th th速增长2、 反向特性:二极管外加反向偏置电压时的V-1特性P型半导体中的少数载流子(电子)和N型半导体中的少数载流子(空穴),在反向电 压作用下很容易通过PN结,形成反向饱和电流但由于少数载流子的数目很少,所以反向 电流是很小的,如图2.9 (b)的第②段所示,一般硅管的反向电流比错管小得多,其数 量级为:硅管nA级,错管大mA级温度升高时,由于少数载流子增加,反向电流将随之急 剧增加3、 反向击穿特性:二极管击穿时的V-1特性当增加反向电压时, 因在一定温度条件下,少数载流子数目有限,故起始一段反向电 流没有多大变化,当反向电压增加到一定大小时,反向电流剧增,这叫做二极管的反向击穿, 对应于图2.9的第③段,其原因与PN结击穿相同三、二极管的主要参数1、 最大整流电流IF:是指管子长期运行时,允许通过的最大正向平均电流。

      因为电流 通过PN结要引起管子发热,电流太大,发热量超过限度,就会使PN结烧坏例如2AP1 最大整流电流为 16mA2、 反向击穿电压VBR:指管子反向击穿时的电压值击穿时,反向电流剧增,二极管 的单向导电性被破坏,甚至因过热而烧坏一般手册上给出的最高反向工作电压约为击穿电 压的一半,以确保管子安全运行例如2AP1最高反向工作电压规定为2OV,而反向击穿 电压实际上大于 40V3、 反向电流IR:指管子末击穿时的反向电流,其值愈小,则管子的单向导电性愈好 由于温度增加,反向电流会急剧增加,所以在使用二极管时要注意温度的影响4、 极间电容Cj:二极管的极间电容包括势垒电容和扩散电容,在高频运用时必须考 虑结电容的影响二极管不同的工作状态,其极间电容产生的影响效果也不同二极管的参数是正确使用二极管的依据,一般半导体器件手册中都给出不同型号管子参 数使用时,应特别注意不要超过最大整流电流和最高反向工作电压,否则将容易损坏管子第四节 二极管基本电路及其分析方法在电子技术中,二极管电路得到广泛的应用本节只介绍几种基本的电路,如限幅电路、 开关电路、低电压稳压电路等二极管是一种非线性器件,因而二极管电路一般要采用非线性电路的分析方法。

      这里主 要介绍比较简单理想模型和恒压模型分析法一、二极管正向特性的数学模型1、理想模型--理想的开关图2.10表示理想二极管的VI特性和符号,其中的虚线表示实际二极管的VI特性由 图中可见,在正向偏置时,其管压降为0V,而当二极管处于反向偏置时,认为它的电阻为 无穷大,电流为零在实际的电路中,当电源电压远比二极管的管压降大时,利用此法来近 似分析是可行的2、恒压模型一其正向压降为0.7V(硅管)这个模型如图2.11 所示,其基本思想是当二极管导通后,其管压降认为是恒定的,且 不随电流而变,典型值为0.7V,不过,这只有当二极管的电流iD近似等于或大于1 mA时才 是正确的该模型提供了合理的近似,因此应用也较广二、模型分析法应用举例1、静态工作点分析Vnn图 2.12电路如图 2.12 所示,请分别用二极管的理想模型和恒压模型分析其静态工作点⑴使用理想模型得:VD=OV, ID=VDD/RV -V)/RDD D使用恒压模型较好,因此,根据实际情况选择合适的(2)使用恒压模型得:Vd=0.7V, ID= 上述的计算结果表明;V >>V时,DD D模型是关键2、模型分析法应用举例例题1:如果图示电路(a)中设二极管为恒压模型。

      求电路中输出的电压V值说明二极管处 于何种状态?解:假设先将A、B断开,则VA = -10V, VB = -5V, ・・・VAB= VA-VB= -5V,可见重新接入后 二极管将处于反向截止状态:电路中电流为0(反向电阻无穷大),・•・电阻R上的压降为0, V -5V 成立例题2:如果图2.13所示电路(b)中设二极管为恒压模型求电路中输出的电压Vo值说明二 极管处于何种状态?解:•・•将D1、D2 断开,VB1A=9V, VB2A= -12-(-9)=-3V ・•.将 D1、D2 接入后,D1 导通, D2截止,VA被D1箝位在一0.7V上。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.