
电路第一章02.ppt
29页1.7 电源元件 (independent source),其两端电压总能保持定值或一定的时间函数,其 值与流过它的电流 i 无关的元件叫理想电压源电路符号,1. 理想电压源,定义,,电源两端电压由电源本身决定, 与外电路无关;与流经它的电流方 向、大小无关通过电压源的电流由电源及外 电路共同决定理想电压源的电压、电流关系,伏安关系,例,外电路,,,,电压源不能短路!,电压源的功率,电场力做功 , 电源吸收功率1) 电压、电流的参考方向非关联;,物理意义:,,,,电流(正电荷 )由低电位向 高电位移动,外力克服电场力作功电源发出功率发出功率,起电源作用,(2) 电压、电流的参考方向关联;,物理意义:,,吸收功率,充当负载,或:,,发出负功,例,计算图示电路各元件的功率解,发出,发出,吸收,满足:P(发)=P(吸),实际电压源也不允许短路因其内阻小,若短路,电流很大,可能烧毁电源实际电压源,考虑内阻,伏安特性,一个好的电压源要求,其输出电流总能保持定值或一定 的时间函数,其值与它的两端电压u 无关的元件叫理想电流源电路符号,2. 理想电流源,定义,,(1) 电流源的输出电流由电源本身决定,与外电路无关;与它两端电压方向、大小无关,电流源两端的电压由电源及外电路共同决定,理想电流源的电压、电流关系,伏安关系,例,外电路,,,,电流源不能开路!,实际电流源的产生,可由稳流电子设备产生,如晶体管的集电极电流与负载无关;光电池在一定光线照射下光电池被激发产生一定值的电流等。
电流源的功率,(1) 电压、电流的参考方向非关联;,,,发出功率,起电源作用,(2) 电压、电流的参考方向关联;,,吸收功率,充当负载,或:,,发出负功,例,计算图示电路各元件的功率解,发出,发出,满足:P(发)=P(吸),实际电流源也不允许开路因其内阻大,若开路,电压很高,可能烧毁电源实际电流源,考虑内阻,伏安特性,一个好的电流源要求,1.8 受控电源 (非独立源) (controlled source or dependent source),电压或电流的大小和方向不是给定的时间函数,而是 受电路中某个地方的电压(或电流)控制的电源,称受控源电路符号,受控电压源,1. 定义,,受控电流源,(1) 电流控制的电流源 ( CCCS ), : 电流放大倍数,根据控制量和被控制量是电压u 或电流i ,受控源可分 四种类型:当被控制量是电压时,用受控电压源表示;当被 控制量是电流时,用受控电流源表示2. 分类,四端元件,输出:受控部分,输入:控制部分,g: 转移电导,(2) 电压控制的电流源 ( VCCS ),(3) 电压控制的电压源 ( VCVS ),: 电压放大倍数,(4) 电流控制的电压源 ( CCVS ),r : 转移电阻,例,,,电路模型,3. 受控源与独立源的比较,(1) 独立源电压(或电流)由电源本身决定,与电路中其它电压、电流无关,而受控源电压(或电流)由控制量决定。
2) 独立源在电路中起“激励”作用,在电路中产生电压、电流,而受控源只是反映输出端与输入端的受控关系,在电路中不能作为“激励”例,求:电压u2解,1.9 基尔霍夫定律 ( Kirchhoff’s Laws ),基尔霍夫定律包括基尔霍夫电流定律 ( KCL )和基尔霍夫电压定律( KVL )它反映了电路中所有支路电压和电流所遵循的基本规律,是分析集总参数电路的基本定律基尔霍夫定律与元件特性构成了电路分析的基础1. 几个名词,电路中通过同一电流的分支b),三条或三条以上支路的连接点称为节点 n ),b=3,a,n=2,b,(1)支路 (branch),,,,电路中每一个两端元件就叫一条支路,(2) 节点 (node),,b=5,由支路组成的闭合路径 l ),两节点间的一条通路由支路构成对平面电路,其内部不含任何支路的回路称网孔l=3,3,,(3) 路径(path),,(4) 回路(loop),,(5) 网孔(mesh),,网孔是回路,但回路不一定是网孔,2. 基尔霍夫电流定律 (KCL),令流出为“+”,有:,例,在集总参数电路中,任意时刻,对任意结点流出或流入该结点电流的代数和等于零。
流进的电流等于流出的电流,例,三式相加得:,表明KCL可推广应用于电路中包围多个结点的任一闭合面,,明确,(1) KCL是电荷守恒和电流连续性原理在电路中任 意结点处的反映;,(2) KCL是对支路电流加的约束,与支路上接的是 什么元件无关,与电路是线性还是非线性无关;,(3)KCL方程是按电流参考方向列写,与电流实际 方向无关2)选定回路绕行方向, 顺时针或逆时针.,–U1–US1+U2+U3+U4+US4= 0,3. 基尔霍夫电压定律 (KVL),在集总参数电路中,任一时刻,沿任一闭合路径绕 行,各支路电压的代数和等于零1)标定各元件电压参考方向,U2+U3+U4+US4=U1+US1,或:,–R1I1+R2I2–R3I3+R4I4=US1–US4,例,KVL也适用于电路中任一假想的回路,明确,(1) KVL的实质反映了电路遵 从能量守恒定律;,(2) KVL是对回路电压加的约束,与回路各支路上接的是什么元件无关,与电路是线性还是非线性无关;,(3)KVL方程是按电压参考方向列写,与电压实际 方向无关4. KCL、KVL小结:,(1) KCL是对支路电流的线性约束,KVL是对回路电压的线性约束。
2) KCL、KVL与组成支路的元件性质及参数无关3) KCL表明在每一节点上电荷是守恒的;KVL是能量守恒的具体体现(电压与路径无关)4) KCL、KVL只适用于集总参数的电路思考:,,,3,3,,解,解,解,解,,,选择参数可以得到电压和功率放大。












