好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

公平的席位分配.docx

10页
  • 卖家[上传人]:hs****ma
  • 文档编号:504305580
  • 上传时间:2024-02-27
  • 文档格式:DOCX
  • 文档大小:39.50KB
  • / 10 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 公平的席位分配姓名:仇嘉程 班级:数学与应用数学(2班 学号:0907022010摘要:席位分配是日常生活中经常遇到的问题,对于企业、公司、、学校政府部 门都能解决实际的问题席位可以是代表大会、股东会议、公司企业员工大会、 等的具体座位本文讨论了席位公平分配问题以使席位分配方案达到最公平状 态我主要根据各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平度的定义,采用了最大剩余法模型和Q值法模型,通过检验2种模型的 相对不公平度来制定比较合理的分配方案关键词:不公平度指标、Q值法、最 大剩余法一、问题的提出:某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名 问题一:若学生代表会议设20个席位,如何公平席位分配?问题二:丙系有6名学生转入甲乙两系,其中甲系转入 3人,乙系转入3人, 又将如何公平的分配20个学生代表会议席位?、合理的假设与变量说明付号符号说明P学生总人数P ii系的学生人数i=1,2,3N总的学生代表会议席位N.ii系所占的学生代表会议席位 i=1,2,3■-此iji方与j方的绝对不公平度ri对i的相对不公平度三、模型的建立:模型1——比例分配法,若使得公平席位分配,最公平简单且常用的席位分配 办法是按学生人数比例分配:某单位席位分配数二某单位总人数比例总席位即:L p丄二」(i 1,2,3.,.其中~亍二i i 1但是在实际生活中,若按模型1来计算,由于席位数不同,很难使得到的结果 为整数,因此模型1难以成立,即绝对公平难以成立,我们需要寻求可能相对 公平的分配方案。

      模型 2——最大剩余法,如果按上述公式参与分配的一些单位席位分配数出现小 数 ,则先按席位分配数的整数分配席位 ,余下席位按所有参与席位分配单位中小 数的大小依次分配之这种分配方法公平吗?由书上给出的案例,我们可以很清 楚的知道该方法是有缺陷的,是不公平的某学院按有甲乙丙三个系并设 20 个学生代表席位它的最初学生人数及学生代 表席位为系名甲乙丙总数学生数1006040200学生人数比例100/200 60/20040/200席位分配106420后来由于一些原因,出现学生转系情况各系学生人数及学生代表席位变为系名甲乙丙总数学生数1036334200学生人数比例103/20063/20034/200按比例分配席位10.36.33.420按惯例席位分配106420由于总代表席位为偶数,使得在解决问题的表决中有时出现表决平局现象而达不成一致意见为改变这一情况,学院决定再增加一个代表席位,总代表席位变为 21 个重新按惯例分配席位 ,有系名甲乙丙总数学生数1036334200学生人数比例103/20063/20034/200按比例分配席位10.8156.6153.5721按惯例席位分配117321这个分配结果出现增加一席后,丙系比增加席位前少一席的情况,这使人觉得 席位分配明显不公平。

      这个结果也说明按惯例分配席位的方法有缺陷,我们需 要建立更合理的分配席位方法解决上面代表席位分配中出现的不公平问题模型 3—— Q 值法先讨论由两个单位公平分配席位的情况,设单位 人数单位A p 1单位B p2pl 2p亠、“ n — n —要公平,应该有1 = 2 ,因此可以考虑用算式来作为衡量分配不公平程度,不过此公式有nin2不足之处(绝对数的特点),如:某两个单位的人数和席位为n1 =n2 =10 , p1 =120, p=100,算得 p=2另两个单位的人数和席位为 n二n =10, p1 2 1算得p=2虽然在两种情况下都有p= 2,但显然第二种情况比第一种公平席位数 每席代表人数pln1 nlp2n n22但这一般不成立注意到等式不成立时有若 pl p2右n1 >口2 ,则说明单位A吃亏即对单位A不公平)Pln n若i〈 2,则说明单位B吃亏即对单位B不公平 )下面采用相对标准,对公式给予改进,定义席位分配的相对不公平标准公式:p1p2若 一>则称nn6 (n,n)pi n1p n为对A的相对不公平值,记为p p1 21 2n np n则称 V F j- 1p1 1 2p nn为对B的相对不公平值,记为rB (n,2n)由定义有对某方的不公平值越小,某方在席位分配中越有利,因此可以用使不公平值尽量小的分配方案来减少分配中的不公平。

      确定分配方案:pl p2再分配一个席位时,关于n-L1的关系可能有nl〉n2,即对单位A不公pl1.2.3.p2 ,说明此一席给A后,对A还不公平n 1 \ lr > 2齐丁 ,说明此一席给A后,对B还不公平,]P2nr V ,说明此一席给B后,对A不公平,pl p2n >n -11 / 2p 24 n < 14. 1 < 2 ,不可能上面的分配方法在第1和第3种情况可以确定新席位的分配,但在第 2种情 况时不好确定新席位的分配用不公平值的公式来决定席位的分配,对于新的 席位分配,若有rB (n n ) rA (n, n1) + < +则增加的一席应给a,反之应给b对不等式2 rB m 1,+尹)Ar (甲n D进行简单 处理,可以得出对应不等式 -n21) n11)p2+:P1+引入公式2p(nk 1)nk于是知道增加的席位分配可以由Qk的最大值决定,且它可以推广到多个组的 一般情况用Qk的最大值决定席位分配的方法称为Q值法对多个组(m个组)的席位分配Q值法可以描述为:1 •先计算每个组的Q值:Q k , k=1,2, ,m•求出其中最大的Q值Qj•将席位分配给最大(若有多个最大值任选其中一个即可)Q值Qi对应的第i组。

      四、模型的求解用Q值法分配,很容易编写出MATLAB程序,以山二n2二n3 =1逐次增加一席的方 法,求每一次的Q值,可得到最后的席位分配方案(MATLAB程序见附录)第20席的分配,计算Q值Q 1=103 2/(10 11) = 96.45 Q 2= 632/(6 7)= 94・5;Q3 = 3*/(3 4)=96.33因为Q i最大,因此第20席应该给甲系;对第21席的分配,计算Q值Q 1= 1032/(11 12)=80.37 ;Q 2 =632/(6 7)=94.5; Q 3 =342/(3 4)=96.33因为Q3最大,因此第21席应该给丙系最后的席位分配为:甲 11席 乙 6席 丙 4席五、 模型的优缺点分析5.1、 优点:模型比较简单却较合理的解决了实际问题,用比例模型和Q值法模型就解决了席 位的公平分配问题由相对不公平值的计算可知两种模型的公平程度都还比较符 合要求模型1的计算过程简单却是公平度比较高的一种模型,操作起来比较方 便模型2可以避免所得席位名额含有小数点的情况5.2、 缺点:模型1的建立比较简单,计算的结果含有小数点,通过四舍五入所得的结果会 使公平性变差模型2的建立相对比较复杂,计算过程比较繁琐,最后得到的 结果的公平性相对较差。

      六、 模型的改进由于以上模型都是站在绝对公平的角度上来解决席位的公平分配问题实际上,每 个系自身对席位的意愿不同,可以考虑征求各系自身的意见来分配席位以做到席位的公平分配同时在建立模型时,使得得到的结果既不含有小数点,计算过程又不是太复杂,公平性又是相对比较强的。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.