好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

考研大纲数学变化线性代数.doc

6页
  • 卖家[上传人]:206****923
  • 文档编号:37689508
  • 上传时间:2018-04-20
  • 文档格式:DOC
  • 文档大小:54.50KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 20132013 考研大纲数学一变化考研大纲数学一变化————线性代数部分线性代数部分章节章节20122012 大纲大纲20132013 大纲大纲变化情况及复习策略变化情况及复习策略一、行列式一、行列式考试内容考试内容行列式的概念和基本性质,行列式按行(列)展开定理考试要求考试要求1 1.. 了解行列式的概念,掌握行列式的性质2 2.. 会应用行列式的性质和行列式按行(列)展开定理计算行列式考试内容考试内容行列式的概念和基本性质,行列式按行(列)展开定理考试要求考试要求1 1.. 了解行列式的概念,掌握行列式的性质2. 会应用行列式的性质和行列式按行(列)展开定理计算行列式无变化,照常复习无变化,照常复习二、矩阵二、矩阵考试内容考试内容矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价,分块矩阵及其运算考试要求考试要求1 1.. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。

      2 2.. 掌握矩阵的线性运考试内容考试内容矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价,分块矩阵及其运算考试要求考试要求1 1.. 理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质2 2.. 掌握矩阵的线性运无变化,照常复习,注意无变化,照常复习,注意矩阵的秩是矩阵的本质矩阵的秩是矩阵的本质算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3 3.. 理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵4 4.. 理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法5 5.. 了解分块矩阵及其运算算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质3 3.. 理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。

      4 4.. 理解矩阵的初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法5. 了解分块矩阵及其运算三、向量三、向量考试内容考试内容向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,向量组的极大线性无关组,等价向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念,n 维向量空间的基变换和坐标变换,过渡矩阵,向量的内积,线性无关向量组的正交规范考试内容考试内容向量的概念,向量的线性组合与线性表示,向量组的线性相关与线性无关,向量组的极大线性无关组,等价向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量空间及其相关概念,n 维向量空间的基变换和坐标变换,过渡矩阵,向量的内积,线性无关向量组的正交规范无变化,照常复习,注意无变化,照常复习,注意向量组的极大无关组是其向量组的极大无关组是其核心化方法,规范正交基,正交矩阵及其性质考试要求考试要求1 1.. 理解 n 维向量、向量的线性组合与线性表示的概念2 2.. 理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法。

      3 3.. 理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4 4.. 理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5 5.. 了解 n 维向量空间、子空间、基底、维数、坐标等概念6 6.. 了解基变换和坐标变换公式,会求过渡矩阵7 7.. 了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法化方法,规范正交基,正交矩阵及其性质考试要求考试要求1 1.. 理解 n 维向量、向量的线性组合与线性表示的概念2 2.. 理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法3 3.. 理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4 4.. 理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系5 5.. 了解 n 维向量空间、子空间、基底、维数、坐标等概念6 6.. 了解基变换和坐标变换公式,会求过渡矩阵7 7.. 了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。

      8 8.. 了解规范正交基、正交矩阵的概念以及它们的性质8. 了解规范正交基、正交矩阵的概念以及它们的性质四、线性方程组四、线性方程组考试内容考试内容线性方程组的克莱姆(Crammer)法则,齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构,齐次线性方程组的基础解系和通解,解空间,非齐次线性方程组的通解考试要求考试要求1 1.. 会用克莱姆法则2 2.. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件3 3.. 理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法4 4.. 理解非齐次线性方程组解的结构及通解的概念5 5.. 掌握用初等行变换考试内容考试内容线性方程组的克拉默(Crammer)法则,齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构,齐次线性方程组的基础解系和通解,解空间,非齐次线性方程组的通解考试要求考试要求1 1.. 会用克拉默法则。

      2 2.. 理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件3 3.. 理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法4 4.. 理解非齐次线性方程组解的结构及通解的概念5. 掌握用初等行变换求无变化,照常复习,注意无变化,照常复习,注意线性方程组的解的结构线性方程组的解的结构求解线性方程组的方法 解线性方程组的方法五、矩阵的特征值和特征五、矩阵的特征值和特征向量向量考试内容考试内容矩阵的特征值和特征向量的概念、性质,相似变换、相似矩阵的概念及性质,矩阵可相似对角化的充分必要条件及相似对角矩阵,实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求考试要求1 1.. 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量2 2.. 理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3 3.. 掌握实对称矩阵的特征值和特征向量的性质考试内容考试内容矩阵的特征值和特征向量的概念、性质,相似变换、相似矩阵的概念及性质,矩阵可相似对角化的充分必要条件及相似对角矩阵,实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求考试要求1 1.. 理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量。

      2 2.. 理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法3. 掌握实对称矩阵的特征值和特征向量的性质无变化,照常复习,注意无变化,照常复习,注意特征值与特征向量的求取特征值与特征向量的求取及其反问题及其反问题六、二次型六、二次型考试内容考试内容二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其考试内容考试内容二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩,惯性定理,二次型的标准形和规范形,用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性考试要求考试要求1 1.. 掌握二次型及其矩阵表示,了解二次型的概念,了解合同变换和合同矩阵的概念,了解二次型的标准型、规范形的概念以及惯性定理2 2.. 掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形3 3.. 理解正定二次型、正定矩阵的概念,并掌握其判别法矩阵的正定性考试要求考试要求1 1.. 掌握二次型及其矩阵表示,了解二次型的概念,了解合同变换和合同矩阵的概念,了解二次型的标准型、规范形的概念以及惯性定理。

      2 2.. 掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形3. 理解正定二次型、正定矩阵的概念,并掌握其判别法。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.