
新型宽频带E型微带天线的设计方案.docx
3页Word版本下载可任意编辑】 新型宽频带E型微带天线的设计方案 0 引言 微带天线具有体积小、重量轻、易馈电、易与载体共形等优点,广泛直用于测量和通信各个领域但是,微带天线的窄频带特性在很多方面限制了它的广泛应用,因此展宽微带天线的带宽具有十分重要的意义 近年来,人们在展宽微带天线的带宽方面做了很多的研究:增大基板厚度,降低介电常数;采用电磁耦合多谐振来扩展带宽的方式,采用缝隙耦合馈电的方式,采用多层构造本文在对上述各种展宽带宽技术的比较研究之后,通过在U型微带天线中间加一段传输线构成新型的E型微带天线,实现了天线阻抗频带的展宽利用HFSS模拟仿真以及实测结果说明,这种天线在工作于4.25~5.366 GHz时,其相对带宽到达了23.2%,且采用了传统的同轴馈电,构造简单,易加工 1 天线设计与分析 微带天线的构造如图1所示,贴片的长为L,宽为W,馈电点位置为(P_x,P_y),U_l和U_w为U型天线尺寸,U型天线中间增加的微带线的长度和宽度分别为E_l和E_w,微带天线离地面的高度为H当E_l为零时即为U型天线,E_l不为零时为E型天线天线采用传统的同轴馈电方式。
天线与地面之间采用空气为介质,减少采用高介电常数介质带来的损耗,同时呵到达增加频带宽度的目的 从图2可知,随着E_l的增大,高频谐振频率点变小,在E_l=14.5 mm时候高频谐振点获得较好的匹配,当E_l继续增大时候匹配变差由图4可得,随着E_w增大,低频谐振点匹配变差,而高频谐振点匹配变好通过调节中间传输线的长度E_l和宽度E_w可获得两个匹配较好的谐振频率点 如图4可得,随着P_y的值增大,天线匹配越好,但是天线工作频带变小通过调节P_y值,可获得的天线匹配和频带的展宽 2 仿真与实测结果分析 经过多次仿真优化后得出E型微带天线的具体尺寸,表1为U型天线和E型天线的尺寸(单位:mm)根据表中参量的值,采用HFSS对本文所设计的微带天线开展仿真,仿真结果如图5~图7所示 图5是U型微带天线和E型微带天线的回波损耗曲线图由图可得,U型天线S11小于-10 dB的频率从4.715~5.035 GHz,中心频率为4.875GHz,频带宽度BW=0.32 GHz,相对带宽为6.5%;E型天线S11小于-10 dB的频率从4.25~5.364 GHz,中心频率为4.807 GHz,频带宽度BW=1.114 GHz,相对带宽为23.2%,相对于U型天线带宽展宽3.5倍。
因此,在U型天线中间参加传输线可以有效展宽带宽 图6,图7是E型天线在两谐振点的E面和H面方向图由图可得,微带天线的增益到达9 dB,较之传统的微带天线增益(5 dB)有较大的增加 如图4可得,随着P_y的值增大,天线匹配越好,但是天线工作频带变小通过调节P_y值,可获得的天线匹配和频带的展宽 图8为E型天线加工的实物图图9为用AgikntE5071C网络分析仪测试E型天线的S11曲线,实测S11小于-10 dB的频带为4.09~5.06GHz由于加工粗糙和馈电端口误差导致对天线频移和带宽的减小,但和仿真的结果相近 3 结语 针对做带天线窄带的特性,本文提出了一种有效展宽微带天线频带的方法通过在U型微带天线中间加一段传输线,适当调整同轴馈电点和传输线的长宽,实现了宽频带高增益的E型微带天线的设计天线工作在4.25~5.366 GHz频带内,且增益到达了9 dB,相对带宽到达23%,可运用于IEEE 802.1 1 a(5 GHz)频段的无线局域网本文给出了实测结果,并与仿真结果一致 3 / 3。









![2019版 人教版 高中语文 必修 上册《第一单元》大单元整体教学设计[2020课标]](http://img.jinchutou.com/static_www/Images/s.gif)


