好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

高考数学(文数)一轮复习课时练习:11.2选修4-5《不等式选讲》(教师版).doc

4页
  • 卖家[上传人]:gu****iu
  • 文档编号:258140619
  • 上传时间:2022-02-23
  • 文档格式:DOC
  • 文档大小:75.50KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 课时规范练A组 基础对点练1.设函数f(x)=|x+|+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.解析:(1)证明:由a>0,有f(x)=+|x-a|≥=+a≥2.所以f(x)≥2.(2)f(3)=+|3-a|.当a>3时,f(3)=a+,由f(3)<5得30,b>0,求证:+≥+.解析:因为+-(+)==又因为a>0,b>0,所以+>0,>0,(-)2≥0,所以+-(+)≥0,所以+≥+.B组 能力提升练1.已知f(x)=|ax+1|(a∈R),不等式f(x)≤3的解集为{x|-2≤x≤1}.(1)求a的值;(2)若≤k恒成立,求k的取值范围.解析:(1)由|ax+1|≤3得-4≤ax≤2.又f(x)≤3的解集为{x|-2≤x≤1},所以当a≤0时,不合题意.当a>0时,有-≤x≤,得a=2.(2)记h(x)=f(x)-2f,则h(x)=所以|h(x)|≤1,因此k≥1.2.已知函数f(x)=|x-1|+|x+1|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.解析:(1)原不等式等价于或或解得x≤-或x∈∅或x≥.所以不等式的解集为.(2)由题意得,关于x的不等式|x-1|+|x+1|≥a2-a在R上恒成立.因为|x-1|+|x+1|≥|(x-1)-(x+1)|=2,所以a2-a≤2,即a2-a-2≤0,解得-1≤a≤2.所以实数a的取值范围是[-1,2].3.设不等式-2<|x-1|-|x+2|<0的解集为M,a,b∈M.(1)证明:<;(2)比较|1-4ab|与2|a-b|的大小.解析:(1)证明:记f(x)=|x-1|-|x+2|=由-2<-2x-1<0解得-0,故|1-4ab|2>4|a-b|2,即|1-4ab|>2|a-b|.4.已知函数f(x)=|3x+2|.(1)解不等式f(x)<4-|x-1|;(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤+(a>0)恒成立,求实数a的取值范围.解析:(1)不等式f(x)<4-|x-1|,即|3x+2|+|x-1|<4.当x<-时,即-3x-2-x+1<4,解得-1时,即3x+2+x-1<4,无解.综上所述,x∈.(2)+=(m+n)=1+1++≥4,令g(x)=|x-a|-f(x)=|x-a|-|3x+2|=∴x=-时,g(x)max=+a,要使不等式恒成立,只需g(x)max=+a≤4,即0

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.