
三年级数学 奥数讲座 竖式数字谜(二).doc
7页三年级数学 奥数讲座 竖式数字谜(二) 本讲只限于乘数、除数是一位数的乘、除法竖式数字谜问题 掌握好乘、除法的基本运算规则(第2讲的公式(3)(4)及推演出的变形式子)是解乘、除法竖式谜的基础根据题目结构形式,通过综合观察、分析,找出“突破口”是解题的关键例1 在左下乘法竖式的□中填入合适的数字,使竖式成立分析与解:由于积的个位数是5,所以在乘数和被乘数的个位数中,一个是5,另一个是奇数因为乘积大于被乘数的7倍,所以乘数是大于7的奇数,即只能是9(这是问题的“突破口”),被乘数的个位数是5 因为7×9<70<8×9,所以,被乘数的百位数字只能是7至此,求出被乘数是785,乘数是9(见右上式)例2 在右边乘法竖式的□里填入合适的数字,使竖式成立分析与解:由于乘积的数字不全,特别是不知道乘积的个位数,我们只能从最高位入手分析 乘积的最高两位数是2□,被乘数的最高位是3,由 可以确定乘数的大致范围,乘数只可能是6,7,8,9到底是哪一个呢?我们只能逐一进行试算:(1)若乘数为6,则积的个位填2,并向十位进4,此时,乘数6与被乘数的十位上的数字相乘之积的个位数只能是5(因4+5=9)。
这样一来,被乘数的十位上就无数可填了这说明乘数不能是62)若乘数为7,则积的个位填9,并向十位进4与(1)分析相同,为使积的十位是9,被乘数的十位只能填5,从而积的百位填4得到符合题意的填法如右式3)若乘数为8,则积的个位填6,并向十位进5为使积的十位是9,被乘数的十位只能填3或8 当被乘数的十位填3时,得到符合题意的填法如右式当被乘数的十位填8时,积的最高两位为3,不合题意4)若乘数为9,则积的个位填3,并向十位进6为使积的十位是9,被乘数的十位只能填7而此时,积的最高两位是3,不合题意 综上知,符合题意的填法有上面两种 除法竖式数字谜问题的解法与乘法情形类似例3 在左下边除法竖式的□中填入适当的数,使竖式成立分析与解:由48÷8=6即8×6=48知,商的百位填6,且被除数的千位、百位分别填4,8又显然,被除数的十位填1由 1□=商的个位×8 知,两位数1□能被8除尽,只有16÷8=2,推知被除数的个位填6,商的个位填2填法如右上式例3是从最高位数入手分析而得出解的例4 在右边除法竖式的□中填入合适的数字使竖式成立分析与解:从已知的几个数入手分析 首先,由于余数是5,推知除数>5,且被除数个位填5。
由于商4时是除尽了的,所以,被除数的十位应填2,且由于3×4=12,8×4=32,推知,除数必为3或8由于已经知道除数>5,故除数=8这是关键!) 从8×4=32知,被除数的百位应填3,且商的百位应填0 从除数为8,第一步除法又出现了4,8×8=64,8×3=24,这说明商的千位只能填8或3试算知,8和3都可以所以,此题有下面两种填法 练习4 1.在下列各竖式的□里填上合适的数: 2.在右式中,“我”、“爱”、“数”、“学”分别代表什么数时,乘法竖式成立? 3.“我”、“们”、“爱”、“祖”、“国”各代表一个不同的数字,它 们各等于多少时,右边的乘法竖式成立? 4.在下列各除法竖式的□里填上合适的数,使竖式成立: 5.在下式的□里填上合适的数 附送:2019-2020年三年级数学 奥数讲座 等差数列1、下面是按规律排列的一串数,问其中的第1995项是多少? 解答:2、5、8、11、14、…… 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984 2、在从1开始的自然数中,第100个不能被3除尽的数是多少? 解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149。
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少? 解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98 4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少? 解答:因为34×28+28=35×28=980<1000,所以只有以下几个数: 34×29+29=35×29 34×30+30=35×30 34×31+31=35×31 34×32+32=35×32 34×33+33=35×33 以上数的和为35×(29+30+31+32+33)=5425 5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3 6、下面的各算式是按规律排列的: 1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992? 解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少? 解答:从左向右算它们的差分别为:999、992、985、……、12、5 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2 8、有19个算式: 那么第19个等式左、右两边的结果是多少? 解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547 9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4它们都是200项,问这两列数中相同的项数共有多少对? 解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。
新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对 10、如图,有一个边长为1米的下三角形,在每条边上从顶点开始,每隔2厘米取一个点,然后以这些点为端点,作平行线将大正三角形分割成许多边长为2厘米的小正三角形求⑴边长为2厘米的小正三角形的个数,⑵所作平行线段的总长度 解答:⑴ 从上数到下,共有100÷2=50行, 第一行1个,第二行3个,第三行5个,……,最后一行99个, 所以共有(1+99)×50÷2=2500个; ⑵所作平行线段有3个方向,而且相同, 水平方向共作了49条, 第一条2厘米,第二条4厘米,第三条6厘米,……, 最后一条98厘米, 所以共长(2+98)×49÷2×3=7350厘米 11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人? 解答:11月份有30天 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页? 解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页 13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵? 解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫?敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵 14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少? 解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。












