8.2 不等式选讲命题角度1含绝对值不等式的图象与解法 高考真题体验·对方向1.(2018全国Ⅲ·23)设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.解(1)f(x)=y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)成立,因此a+b的最小值为5.2.(2017全国Ⅰ·23)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.解(1)当a=1时,不等式f(x)≥g(x)等价于x2-x+|x+1|+|x-1|-4≤0. ①当x<-1时,①式化为x2-3x-4≤0,无解;当-1≤x≤1时,①式化为x2-x-2≤0,从而-1≤x≤1;当x>1时,①式化为x2+x-4≤0,从而11的解集.解(1)f(x)=y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;当f(x)=-1时,可得x=或x=5,故f(x)>1的解集为{x|11的解集为.新题演练提能·刷高分1.(2018安徽淮南一模)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图象;(2)若不等式f(x)≤ax的解集非空,求a的取值范围.解(1)由于f(x)=则y=f(x)的图象如图所示:(2)由函数y=f(x)与函数y=ax的图象可知,当且仅当a≥或a<-2时,函数y=f(x)与函数y=ax的图象有交点,故不等式f(x)≤ax的解集非空时,a的取值范围是(-∞,-2)∪,+∞.2.(2018河北邯郸一模)已知函数f(x)=|x-4|+|x-1|-3.(1)求不等式f(x)≤2的解集;(2)若直线y=kx-2与函数f(x)的图象有公共点,求k的取值范围.解(1)由f(x)≤2,得解得0≤x≤5,故不等式f(x)≤2的解集为[0,5].(2)f(x)=|x-4|+|x-1|-3=作出函数f(x)的图象,如图所示,直线y=kx-2过定点C(0,-2),当此直线经过点B(4,0)时,k=;当此直线与直线AD平行时,k=-2.故由图可知,k∈(-∞,-2)∪,+∞.3.(2018安徽蚌埠模拟)已知函数f(x)=|x+1|-2|x|.(1)求不等式f(x)≤-6的解集;(2)若f(x)的图象与直线y=a围成的图形的面积不小于14,求实数a的取值范围.解(1)f(x)=|x+1|-2|x|=则不等式f(x)≤-6等价于解得x≤-5或x≥7.故不等式f(x)≤-6的解集为{x|x≤-5或x≥7}.(2)作出函数f(x)的图象,如图.若f(x)的图象与直线y=a围成的图形是三角形,则当a=-2时,△ABC的面积取得最大值×4×3=6,∴f(x)的图象与直线y=a围成图形的面积不小于14,该图形一定是四边形,即a<-2.∵△ABC的面积是6,∴梯形ABED的面积不小于8.∵AB=4,D(1+a,a),E(1-a,a),DE=-2a,∴×(4-2a)×(-2-a)≥14-6=8,a2≥12.又a<-2,则a≤-2,故实数a的取值范围是(-∞,-2].4.(2018福建漳州期末调研)已知函数f(x)=|2x-1|+2|x+2|.(1)求函数f(x)的最小值;(2)解不等式f(x)<8.解(1)因为f(x)=|2x-1|+2|x+2|≥|(2x-1)-2(x+2)|=5,所以f(x)=(2)当x<-2时,由-4x-3<8,解得x>-,即-时,由4x+3<8,解得x<,即1.(1)当a=2时,求不等式f(x)≥4-|x-4|的解集;(2)已知关于x的不等式|f(2x+a)-2f(x)|≤2的解集为{x|1≤x≤2},求a的值.解(1)当a=2时,f(x)+|x-4|=当x≤2时,由f(x)≥4-|x-4|得-2x+6≥4,解得x≤1.当21的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.解(1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)=故不等式f(x)>1的解集为.(2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立.若a≤0,则当x∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为02时,由f(x)≥1解得x>2.所以f(x)≥1的解集为{x|x≥1}.(2)由f(x)≥x2-x+m得m≤|x+1|-|x-2|-x2+x.而|x+1|-|x-2|-x2+x≤|x|+1+|x|-2-x2+|x|=-,且当x=时,|x+1|-|x-2|-x2+x=.故m的取值范围为.4.(2016全国Ⅲ·24)已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.解(1)当a=2时,f(x)=|2x-2|+2.解不等式|2x-2|+2≤6得-1≤x≤3.因此f(x)≤6的解集为{x|-1≤x≤3}.(2)当x∈R时,f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,当x=时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3. ①(分类讨论)当a≤1时,①等价于1-a+a≥3,无解.当a>1时,①等价于a-1+a≥3,解得a≥2.所以a的取值范围是[2,+∞).新题演练提能·刷高分1.(2018江西新课程质量监测)已知函数f(x)=|x+1|-|x-a|,其中a为实数.(1)当a=1时,解不等式f(x)≥1;(2)当x∈[0,+∞)时,不等式f(x)<2恒成立,求a的取值范围.解(1)当a=1时,f(x)=|x+1|-|x-1|=故f(x)≥1⇒x≥,即不等式f(x)≥1的解集是,+∞.(2)当x∈[0,+∞)时,f(x)<2⇒|x+1|-|x-a|<2⇒x+1-|x-a|<2⇒|x-a|>x-1,当x∈[0,1)时,x-1<0,显然满足条件,此时a为任意值;当x=1时,a≠1;当x∈(1,+∞)时,可得x-a>x-1或a-x>x-1,求得a<1.综上,a∈(-∞,1).2.(2018山东济南一模)已知函数f(x)=|2x-2|-|x+2|.(1)求不等式f(x)≥6的解集;(2)当x∈R时,f(x)≥-x+a恒成立,求实数a的取值范围.解(1)当x≤-2时,f(x)=-x+4,∴f(x)≥6⇒-x+4≥6⇒x≤-2,故x≤-2;当-2-1时,同法可知g(x)min=g(-a)=a+1=。