好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

十年(2015-2024)高考真题分项汇编 数学 专题17 直线与圆小题综合 含解析.docx

34页
  • 卖家[上传人]:ligh****329
  • 文档编号:597870441
  • 上传时间:2025-02-09
  • 文档格式:DOCX
  • 文档大小:2.13MB
  • / 34 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题17 直线与圆小题综合考点十年考情(2015-2024)命题趋势考点1 直线方程与圆的方程(10年5考)2024·北京卷、2022·全国甲卷、2022·全国乙卷2018·天津卷、2016·上海卷、2016·浙江卷2016·天津卷、2016·全国卷、2015·全国卷2016·北京卷、2015·北京卷1.理解、掌握直线的倾斜角与斜率及其关系,熟练掌握直线方程的5种形式及其应用,熟练掌握距离计算及其参数求解,该内容是新高考卷的常考内容,通常和圆结合在一起考查,需重点练习2.理解、掌握圆的标准方程和一般方程,并会基本量的相关计算,能正确处理点与圆、直线与圆及圆与圆的位置关系求解,能利用圆中关系进行相关参数求解,会解决圆中的最值问题,该内容是新高考卷的必考内容,一般考查直线与圆和圆与圆的几何综合,需强化练习3. 熟练掌握圆中切线问题的快速求解,该内容是新高考卷的常考内容,需要大家掌握二级结论来快速解题,需强化练习4. 强化解析几何联动问题考点2 直线与圆的位置关系及其应用(10年6考)2023·全国新Ⅱ卷、2022·北京卷、2022·天津卷2020·天津卷、2018·全国卷、2016·全国卷2016·全国卷、2016·全国卷、2016·山东卷2015·湖北卷、2015·湖北卷、2015·全国卷考点3 圆中的切线问题(10年7考)2024·全国新Ⅱ卷、2023·全国新Ⅰ卷、2023·天津卷2022·全国甲卷、2021·全国新Ⅱ卷、2020·全国卷2020·全国卷、2020·浙江卷、2019·浙江卷2015·山东卷、2015·山东卷、2015·湖北卷考点4 直线、圆与其他知识点综合(10年7考)2024·天津卷、2023·全国甲卷、2023·全国乙卷2022·全国新Ⅱ卷、2022·全国甲卷、2021·全国新Ⅱ卷2021·全国乙卷、2021·全国甲卷、2020·山东卷2020·北京卷、、2018·全国卷、2015·全国卷考点5 直线与圆中的最值及范围问题(10年9考)2024·全国甲卷、2024·全国甲卷、2023·全国乙卷2022·全国新Ⅱ卷、2021·北京卷、2021·全国新Ⅰ卷2020·全国卷、2020·北京卷、2020·全国卷2020·全国卷、2019·江苏卷、2018·北京卷2018·全国卷、2017·江苏卷、2016·四川卷2016·四川卷、2016·北京卷考点01 直线方程与圆的方程1.(2024·北京·高考真题)圆的圆心到直线的距离为(    )A. B. C. D.【答案】D【分析】求出圆心坐标,再利用点到直线距离公式即可.【详解】由题意得,即,则其圆心坐标为,则圆心到直线的距离为.故选:D.2.(2022·全国甲卷·高考真题)设点M在直线上,点和均在上,则的方程为 .【答案】【分析】设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.【详解】[方法一]:三点共圆∵点M在直线上,∴设点M为,又因为点和均在上,∴点M到两点的距离相等且为半径R,∴,,解得,∴,,的方程为.故答案为:[方法二]:圆的几何性质由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.故答案为:3.(2022·全国乙卷·高考真题)过四点中的三点的一个圆的方程为 .【答案】或或或.【分析】方法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;【详解】[方法一]:圆的一般方程依题意设圆的方程为,(1)若过,,,则,解得,所以圆的方程为,即;(2)若过,,,则,解得,所以圆的方程为,即;(3)若过,,,则,解得,所以圆的方程为,即;(4)若过,,,则,解得,所以圆的方程为,即;故答案为:或 或 或.[方法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心) 设 (1)若圆过三点,圆心在直线,设圆心坐标为, 则,所以圆的方程为;(2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;(3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;(4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.故答案为:或 或 或.【整体点评】方法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;方法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解. 4.(2018·天津·高考真题)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .【答案】【详解】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.5.(2016·上海·高考真题)已知平行直线,则的距离是 .【答案】【详解】试题分析:利用两平行线间的距离公式得.【考点】两平行线间距离公式【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数必须相同,本题较为容易,主要考查考生的基本运算能力.6.(2016·浙江·高考真题)已知,方程表示圆,则圆心坐标是 ,半径是 .【答案】 ; 5.【详解】试题分析:由题意,知,,当时,方程为,即,圆心为,半径为5,当时,方程为,不表示圆.圆的标准方程.由方程表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.7.(2016·天津·高考真题)已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为 .【答案】【详解】试题分析:设,则,故圆C的方程为【考点】直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a,b,r的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D,E,F的方程组求解.(2)几何法:通过研究圆的性质、直线和圆的位置关系等求出圆心、半径,进而写出圆的标准方程.8.(2016·全国·高考真题)圆的圆心到直线的距离为1,则A. B. C. D.2【答案】A【详解】试题分析:由配方得,所以圆心为,因为圆的圆心到直线的距离为1,所以,解得,故选A.【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d与半径r的大小关系,以此来确定参数的值或取值范围.9.(2015·全国·高考真题)过三点,,的圆交y轴于M,N两点,则A.2 B.8 C.4 D.10【答案】C【详解】由已知得,,所以,所以,即为直角三角形,其外接圆圆心为AC中点,半径为长为,所以外接圆方程为,令,得,所以,故选C.考点:圆的方程.10.(2016·北京·高考真题)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为 (   )A.1 B.2C. D.2【答案】C【详解】试题分析:圆心坐标为,由点到直线的距离公式可知,故选C.【考点】直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.11.(2015·北京·高考真题)圆心为且过原点的圆的方程是A.B.C.D.【答案】D【详解】试题分析:设圆的方程为,且圆过原点,即,得,所以圆的方程为.故选D.考点:圆的一般方程. 考点02 直线与圆的位置关系及其应用1.(2023·全国新Ⅱ卷·高考真题)已知直线与交于A,B两点,写出满足“面积为”的m的一个值 .【答案】(中任意一个皆可以)【分析】根据直线与圆的位置关系,求出弦长,以及点到直线的距离,结合面积公式即可解出.【详解】设点到直线的距离为,由弦长公式得,所以,解得:或,由,所以或,解得:或.故答案为:(中任意一个皆可以).2.(2022·北京·高考真题)若直线是圆的一条对称轴,则(    )A. B. C.1 D.【答案】A【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.【详解】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.故选:A.3.(2022·天津·高考真题)若直线与圆相交所得的弦长为,则 .【答案】【分析】计算出圆心到直线的距离,利用勾股定理可得出关于的等式,即可解得的值.【详解】圆的圆心坐标为,半径为,圆心到直线的距离为,由勾股定理可得,因为,解得.故答案为:.4.(2020·天津·高考真题)已知直线和圆相交于两点.若,则的值为 .【答案】5【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离,进而利用弦长公式,即可求得.【详解】因为圆心到直线的距离,由可得,解得.故答案为:.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.5.(2018·全国·高考真题)直线与圆交于两点,则 .【答案】【分析】方法一:先将圆的方程化成标准方程,求出圆心,半径,再根据点到直线的距离公式以及弦长公式即可求出.【详解】[方法一]:【通性通法】【最优解】弦长公式的应用根据题意,圆的方程可化为,所以圆的圆心为,且半径是,弦心距,所以.故答案为:.[方法二]:距离公式的应用由解得:或,不妨设,所以.故答案为:.[方法三]:参数方程的应用直线的参数方程为,将其代入,可得,化简得,从而,所以.故答案为:.【整体点评】方法一:利用圆的弦长公式直接求解,是本题的通性通法,也是最优解;方法二:直接求出弦的端点坐标,再根据两点间的距离公式求出,是求解一般弦长的通性通法,有时计算偏麻烦;方法三:直线参数方程中弦长公式的应用.6.(2016·全国·高考真题)已知直线:与圆交于两点,过分别作的垂线与轴交于两点.则 .【答案】4【详解】试题分析:由,得,代入圆的方程,整理得,解得,所以,所以.又直线的倾斜角为,由平面几何知识知在梯形中,.【考点】直线与圆的位置关系【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系的非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.7.(2016·全国·高考真题)已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则 .【答案】4【。

      点击阅读更多内容
      猜您喜欢
      2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)化学试题(适用地区:贵州) 含解析.docx 湖南省常德市优质高中学校联盟2024-2025学年高二上学期期末质量检测地理试题(A卷)含解析.docx 山东省滨州市2024-2025学年高二上学期期末考试 数学 含解析.docx 2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)生物试题(适用地区:贵州)含解析.docx 甘肃省酒泉市2023-2024学年高一下学期7月期末考试 化学含解析.docx 湖北省随州市部分高中2024-2025学年高二上学期1月期末联考地理试题 含答案.docx 安徽省宣城市2023-2024学年高二上学期期末英语试卷含解析.docx 江苏省苏北四市(徐州、宿迁、淮安、连云港) 2025届高三第一次调研考试 英语 含答案.docx 广东省潮州市2024-2025学年高三上学期期末考试 政治含答案.docx 江苏省南京市2024-2025学年高一上学期期末考试 语文含答案.docx 2024年高考真题和模拟题分类汇编 物理 专题12 交变电流含解析.docx 2024年高考真题和模拟题分类汇编 物理 专题16 原子物理含解析.docx 浙江省舟山市2023-2024学年高二下学期6月期末检测化学试题 含解析.docx 吉林省吉林市普通中学2024-2025学年高一上学期期末考试 数学 含答案.docx 上海市青浦区2024届高三下学期二模试题 历史含解析.docx 福建省2024届漳州市高三下学期毕业班第三次质量检测物理试题 含答案.docx 湖北省恩施州高中教育联盟2024-2025学年高一上学期1月期末地理试题 含答案.docx 辽宁省锦州市2023-2024学年高二下学期期末考试 生物 含解析.docx 贵州省遵义市2023-2024学年高一下学期7月期末考试 政治 Word版含解析.docx 湖北省宜荆荆2024届高三下学期一模化学试题含答案.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.