好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

概率论与数理统计之7.ppt

48页
  • 卖家[上传人]:re****.1
  • 文档编号:578325534
  • 上传时间:2024-08-24
  • 文档格式:PPT
  • 文档大小:675.02KB
  • / 48 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • §2.4 连续型随机变量及其概率密度连续型随机变量及其概率密度定义 设 X 是随机变量, 若存在一个非负 可积函数 f ( x ), 使得其中F ( x )是它的分布函数则称 X 是连续型随机变量,f ( x )是它的概率密度函数( p.d.f. ),简称为密度函数或概率密度连续型随机变量的概念连续型随机变量的概念§2.3 连续48 xf ( x)xF ( x )分布函数与密度函数 几何意义49 p.d.f. f ( x )的性质的性质q q 常利用这两个性质检验一个函数能否作为连续性随机变量的密度函数,q 在 f ( x ) 的连续点处,f ( x ) 描述了X 在 x 附近单位长度的区间内取值的概率50 积分不是Cauchy 积分,而是Lesbesgue 意义下的积分,所得的变上限的函数是绝对连续的,因此几乎处处可导线段质量长度密度51 注意: 对于连续型随机变量X , P(X = a) = 0其中 a 是随机变量 X 的一个可能的取值命题命题 连续随机变量取任一常数的概率为零强调强调 概率为概率为0 (1) 的事件未必不发生的事件未必不发生(发生发生)事实上52 对于连续型随机变量 Xbxf ( x)a53 xf ( x)a54 例例1 1 已知某型号电子管的使用寿命 X 为连续随机变量, 其密度函数为(1) 求常数 c (3) 已知一设备装有3个这样的电子管, 每个电子管能否正常工作相互独立, 求在使用的最初1500小时只有一个损坏的概率.(2) 计算例1 55 解解(1) 令c = 1000(2) 56 (3)设A 表示一个电子管的寿命小于1500小时设在使用的最初1500小时三个电子管中损坏的个数为 Y57 例例2 2 设为使 f (x) 成为某随机变量 X 在解解 由 上的密度函数, 系数 a, b , c 必须且只需满足什么条件?当有最小值58 另外由当且仅当 时得所以系数 a, b , c 必须且只需满足下列条件59 例例3 设随机变量 具有概率 密度(1) 确定常数(2)求 的分布函数 解: (1)由60 解得(2) 的分布函数为61 62 (1) 均匀分布均匀分布常见的连续性随机变量的分布常见的连续性随机变量的分布若 X 的密度函数为则称 X 服从区间( a , b)上的均匀分布均匀分布或称 X 服从参数为 a , b的均匀分布均匀分布. 记作均匀分布63 X 的分布函数为64 xf ( x)abxF( x)ba65 即 X 落在(a,b)内任何长为 d – c 的小区间的概率与小区间的位置无关, 只与其长度成正比. 这正是几何概型的情形. 进行大量数值计算时, 若在小数点后第k 位进行四舍五入, 则产生的误差可以看作服从 的随机变量应用场合应用场合66 例例3 3 秒表最小刻度值为0.01秒. 若计时精度是取最近的刻度值, 求使用该表计时产生的随机误差X 的概率密度, 并计算误差的绝对值不超过0.004秒的概率. 解解 X 等可能地取得区间所以上的任一值,则67 (2) 指数分布指数分布若 X 的密度函数为则称 X 服从 参数为的指数分布记作X 的分布函数为 > 0 为常数指数分布68 1xF( x)0xf ( x)069 对于任意的 0 < a < b, 应用场合应用场合 用指数分布描述的实例有:随机服务系统中的服务时间问题中的通话时间无线电元件的寿命动物的寿命 指数分布常作为各种“寿命” 分布的近似70 若 X ~E(),则故又把指数分布称为故又把指数分布称为“永远年轻永远年轻”的分布的分布指数分布的“无记忆性无记忆性”事实上命题年轻71 解解 (1)例例4 4 假定一大型设备在任何长为 t 的时间内发生故障的次数 N( t ) ~ (t), 求(1)相继两次故障的时间间隔 T 的概率分布;(2)设备已正常运行8小时的情况下,再正常(3)  运行 10 小时的概率.例472 即(2)由指数分布的“无记忆性”73 (3) 正态分布正态分布若X 的密度函数为则称 X 服从参数为  ,  2 的正态分布记作 X ~ N (  ,  2 )为常数,正态分布 亦称高斯(Gauss)分布74 N (-3 , 1.2 )75 f (x) 的性质的性质:q 图形关于直线 x =  对称, 即在 x =  时, f (x) 取得最大值在 x = ± 时, 曲线 y = f (x) 在对应的点处有拐点曲线 y = f (x) 以 x 轴为渐近线曲线 y = f (x) 的图形呈单峰状f ( + x) = f ( - x) 性质76 77 q f ( x) 的两个参数:的两个参数: — 位置参数即固定  , 对于不同的  , 对应的 f (x)的形状不变化,只是位置不同  — 形状参数固定  ,对于不同的 ,f ( x) 的形状不同.若 1< 2 则比x=  2 所对应的拐点更靠近直线 x=附近值的概率更大. x =   1 所对应的拐点前者取 78 Show[fn1,fn3]大小几何意义  大小与曲线陡峭程度成反比数据意义  大小与数据分散程度成正比79 正态变量的条件 若随机变量 X① 受众多相互独立的随机因素影响② 每一因素的影响都是微小的 ③ 且这些正、负影响可以叠加则称 X 为正态随机变量80 可用正态变量描述的实例极多:各种测量的误差; 人体的生理特征;工厂产品的尺寸; 农作物的收获量;海洋波浪的高度; 金属线抗拉强度;热噪声电流强度; 学生的考试成绩;81 一种重要的正态分布一种重要的正态分布是偶函数,分布函数记为标准正态其值有专门的表供查.—— 标准正态分布N (0,1)密度函数 83 -xx84 对一般的正态分布 :X ~ N (  , 2) 其分布函数作变量代换85 例例5 5 设 X ~ N(1,4) , 求 P (0  X  1.6)解解P380 附表3例586 例例6 6 已知且 P( 2 < X < 4 ) = 0.3,求 P ( X < 0 ).解一解一例687 解二解二 图解法0.2由图0.388 例例 3 原理设 X ~ N (  ,  2), 求解解一次试验中, X 落入区间(  - 3 ,  +3 )的概率为 0.9974, 而超出此区间可能性很小由3 原理知,当3 原理89 标准正态分布的上  分位点 z设 X ~ N (0,1) , 0 <  < 1, 称满足的点 z 为X 的上 分位点 z常用数据90 例例7 7 设测量的误差 X ~ N(7.5,100)(单位:米) 问要进行多少次独立测量,才能使至 少有一次误差的绝对值不超过10米的 概率大于0.9 ?解解例791 设 A 表示进行 n 次独立测量至少有一次误差的绝对值不超过10米n > 3故至少要进行 4 次独立测量才能满足要求.92 每周一题6第第 6 6 周周 问问 题题 上海某年有 9万名高中毕业生参加高考, 结果有5.4万名被各类高校录取. 考试满分为600分,540分以上有2025人 , 360分以下有13500人. 试估计高校录取最低分. 93 在高为 h 的 ABC 中任取一点M , 点 M 到 AB 的距离为随机变量附录附录X , 如何求其密度函数 f (x)? ABCh.M 思考题题 附附录录 94 95 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.