好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

【湘教版】八年级下册数学:第2章 小结与复习.ppt

40页
  • 卖家[上传人]:鲁**
  • 文档编号:593415087
  • 上传时间:2024-09-24
  • 文档格式:PPT
  • 文档大小:1.07MB
  • / 40 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 精 品 数 学 课 件2020 学 年 湘 教 版 小结与复习学练优八年级数学下(XJ) 教学课件第2章 四边形要点梳理考点讲练课堂小结课后作业 一、多边形的内角和与外角和多边形的内角和等于(n-2) ×180 °多边形的外角和等于 360 °正多边形每个内角的度数是正多边形每个外角的度数是要点梳理要点梳理 几 何 语 言文字叙述对边平行对边相等对角相等∴ AD=BC ,AB=DC.∵ 四边形ABCD是平行四边形, ∴ ∠ A=∠C,∠ B=∠D.∵ 四边形ABCD是平行四边形, 二、平行四边形的性质对角线互相平分∵ 四边形ABCD是平行四边形, ∴ OA=OC,OB=OD.∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC.ABCDO 几 何 语 言文字叙述两组对边相等一组对边平行且相等 ∴四边形ABCD是平行四边形, ∵ AD=BC ,AB=DC.∴ 四边形ABCD是平行四边形, ∵ AB=DC,AB∥DC.三、平行四边形的判定对角线互相平分∴ 四边形ABCD是平行四边形, ∵ OA=OC,OB=OD.两组对边分别平行(定义)∵ 四边形ABCD是平行四边形, ∴ AD∥BC ,AB∥DC.平行线之间的距离处处相等ABCDO 1.中心对称把一个图形绕着某一个点旋转____,如果它能与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.180°四、中心对称 2.中心对称的特征中心对称的特征:在成中心对称的两个图形中,对应点所连线段都经过 ,并且被对称中心________.3.中心对称图形把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.对称中心平分 1.三角形的中位线定义:连接三角形两边中点的线段叫做三角形的中位线.2.三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.五、三角形的中位线用符号语言表示∵DE是△ABC的中位线∴DE∥BC, 项目项目四边形四边形对边对边角角对角线对角线平行且相等平行且四边相等平行且四边相等四个角都是直角对角相等邻角互补四个角都是直角互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角互相垂直且平分,每一条对角线平分一组对角六、矩形、菱形、正方形的性质 四边形四边形条件条件①①定义:有一内角是直角的平行四边形 ②②三个角是直角的四边形③③对角线相等的平行四边形①①定义:一组邻边相等的平行四边形 ②②四条边都相等的四边形③③对角线互相垂直的平行四边形①①定义:一组邻边相等且有一个角是直角的平行四边形②②有一组邻边相等的矩形③③有一个角是直角的菱形七、矩形、菱形、正方形的判定方法 考点一￿￿多边形的内角和与外角和例1:已知一个多边形的每个外角都是其相邻内角度数的 ,求这个多边形的边数. 解: 设此多边形的外角的度数为x,则内角的度数为4x, 则x+4x=180°,解得 x=36°.∴边数n=360°÷36°=10.考点讲练考点讲练 1.一个正多边形的每一个内角都等于120 °,则其边数是 .6【解析】 因为该多边形的每一个内角都等于120°,所以它的每一个外角都等于60 °.所以边数是6.归纳拓展 在多边形的有关求边数或内角、外角度数的问题中,要注意内角与外角之间的转化,以及定理的运用.尤其在求边数的问题中,常常利用定理列出方程,进而再求得边数.针对训练 考点二￿￿￿平行四边形的性质例2 如图,在平行四边形ABCD中,下列结论中错误的是(  )A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC 【解析】A.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,故A正确;B.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,故B正确;C.∵四边形ABCD是平行四边形,∴AB=CD,故C正确;D 方法总结 主要考查了平行四边形的性质,关键是掌握平行四边形对边相等且平行,对角相等. 针对训练2.如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AD=BC,AB=CD,∠BAD=∠BCD,(平行四边形的对角相等,对边相等)∵AE平分∠BAD,CF平分∠BCD,∴∠EAB= ∠BAD,∠FCD= ∠BCD,∴∠EAB= ∠FCD,在△ABE和△CDF中 ∠B=∠D AB=CD ∴△ABE≌△CDF,∴BE=DF. ∠EAB=∠FCD ∵AD=BC ∴AF=EC. 例3 如图,在▱ABCD中,∠ODA=90°,AC=10cm,BD=6cm,则AD的长为(  )A.4cm B.5cm C.6cm D.8cm 【解析】∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC= AC=5cm,OB=OD= BD=3cm,∵∠ODA=90°,∴AD= =4cm.A 方法总结 主要考查了平行四边形的性质,平行四边形的对角线互相平分,解题时还要注意勾股定理的应用. 【解析】∵在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,∴AO=CO=12cm,BO=19cm,AD=BC=28cm,∴△BOC的周长是:BO+CO+BC=12+19+28=59(cm).针对训练3.如图,在▱ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则△BOC的周长是(  )A.45cm B.59cm C.62cm D.90cm B 考点三￿￿￿平行四边形的判定例4 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形(  )A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CD C.AD∥BC,AD=BC D.AB=CD,AO=CO D 平行四边形的判定方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.方法总结 针对训练4.如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,(1)求证:AB=EF.(1)证明:∵AC∥DE,∴∠ACD=∠EDF,∵BD=CF,∴BD+DC=CF+DC,即BC=DF,又∵∠A=∠E,∴△ABC≌△EFD(AAS),∴AB=EF; (2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F,∴AB∥EF,又∵AB=EF,四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形). 考点四￿￿中心对称及中心对称图形例5 下列图形中,既是轴对称图形,又是中心对称图形的是(  ).      A           B           C          DD【解析】 图A.图B都是轴对称图形,图C是中心对称图形,图D既是中心对称图形也是轴对称图形. 5.下列说法不正确的是( )A.任何一个具有对称中心的四边形都是平行四边形B.平行四边形既是轴对称图形,又是中心对称图形C.线段、平行四边形、矩形、菱形、正方形都是中心对称图形D.正三角形、矩形、菱形、正方形都是轴对称图形,且对称轴都不止一条.B针对训练 考点五￿￿￿三角形的中位线例6 已知:AD是△ABC的中线,E是AD的中点,F是BE的延长线与AC的交点.求证: . 证明:过点D作DH∥BF,交AC于点H. ∵AD是△ABC的中线. ∴D是BC的中点. ∴CH=HF= CF ∵E是AD的中点,EF∥DH. ∴AF=FH. ∴AF= FCABCDEFH 针对训练6.若三角形的三条中位线之比为 6 : 5 : 4 ,三角形的周长为 60 cm,那么该三角形中最长边的边长为___;解析:设三角形的三条中位线之长分别为6x,5x,4x,则三角形的三条边长分别为12x,10x,8x,依题意有 12x+10x+8x=60,解得 x=2.所以,最长边12x=24(cm).24 cm 例7:如图,在矩形ABCD中,两条对角线相交于点O,∠∠AOD=120°,AB=2.5 ,求矩形对角线的长.解:∵四边形ABCD是矩形. ∴AC = BD(矩形的对角线相等). OA= OC= AC, ,OB = OD = BD ,(矩形对角线相互平分)∴OA = OD.ABCDO考点六￿￿￿矩形的性质和判定 ABCDO∵∵∠∠AOD=120°,∴∴∠∠ODA=∠∠OAD= (180°- 120°)=30°.又∵∠∠DAB=90° ,(矩形的四个角都是直角) ∴BD = 2AB = 2 ×2.5 = 5. 7.如图,在□ABCD中,对角线AC与BD相交于点O , △ABO是等边三角形, AB=4,求□ABCD的面积.解:∵四边形ABCD是平行四边形,∴OA= OC,OB = OD.又∵△ABO是等边三角形,∴OA= OB=AB= 4,∠BAC=60°.∴AC= BD= 2OA = 2×4 = 8.ABCDO针对训练 ∴□ABCD是矩形 ((对角线相等的平行四边形是矩形)).∴∠ABC=90°(矩形的四个角都是直角) . 在Rt△ABC中,由勾股定理,得AB2 + BC2 =AC2 , ∴BC= .∴S□ABCD=AB·BC=4× =ABCDO 8.如图,O是菱形ABCD对角线的交点,作BE∥AC,CE∥BD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形. ∴AC⊥BD. ∴∠BOC=90°. ∵BE∥∥AC,CE∥∥BD,, ∴四边形CEBO是平行四边形. ∴四边形CEBO是矩形((有一个角是直角的平行四边形是矩形)). 例8:如图,在菱形ABCD中,对角线AC与BD相交于点O,∠BAD=60°,BD =6,求菱形的边长AB和对角线AC的长.解:∵四边形ABCD是菱形, ∴AC⊥BD(菱形的对角线互相垂直) OB=OD= BD = ×6=3(菱形的对角线互相平分)在等腰三角形ABC中,∵∠BAD=60°,∴△ABD是等边三角形.∴AB = BD = 6. ∴在Rt△AOB中,AO∴AC=2AO=ABCOD考点七￿￿￿菱形的性质和判定 证明:在△△AOB中.∵AB= = , OA=2,OB=1. ∴AB2=AO2+OB2. ∴ △△AOB是直角三角形, ∠∠AOB是直角. ∴AC⊥⊥BD.∴ □ABCD是菱形 (对角线垂直的平行四边形是菱形).9. 已知:如右图,在□ABCD中,对角线AC与BD相交于点O, AB= ,OA=2,OB=1. 求证: □ABCD是菱形.ABCOD针对训练 10.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.ABCDEF解:四边形ABCD是菱形.过点C作AB边的垂线,交点为E,作AD边上的垂线,交点为F.S 四边形ABCD=AD · CF =AB ·CE .由题意可知 CE = CF 且 四边形ABCD是平行四边形.∴AD = AB . ∴四边形ABCD是菱形. 例9 如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB , BF∥CE , CF∥BE.求证:四边形BECF是正方形.FABECD解析:先由两组平行线得出四边形BECF为平行四边形;再由一组邻边相等可得菱形;最后由一个直角,得出是正方形.45°45°考点八￿￿￿正方形的性质和判定 FABECD证明: ∵ BF∥CE,CF∥BE,, ∴四边形BECF是平行四边形. ∵四边形ABCD是矩形, ∴ ∠ABC = 90°, ∠DCB = 90°, ∵BE平分∠ABC, CE平分∠ DCB, ∴∠EBC = 45°, ∠ECB = 45°, ∴ ∠ EBC =∠ ECB . ∴ EB=EC,∴□ BECF是菱形 . 在△△EBC中 ∵ ∠EBC = 45°,∠ECB = 45°, ∴∠BEC = 90°, ∴菱形BECF是正方形.(有一个角是直角的菱形是正方形) 平平 行行 四四 边边 形形性质性质①①对边平行且相等对边平行且相等②②对角相等,邻角互补对角相等,邻角互补③③对角线互相平分对角线互相平分判定判定①①两组对边分别平行的两组对边分别平行的②②两组对边分别相等的两组对边分别相等的③③一组对边平行且相等的一组对边平行且相等的④④对角线互相平分的对角线互相平分的四四 边边 形形平平 行行 四四 边边 形形课堂小结课堂小结 三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.多边形的内角和与外角和内角和计算 公 式(n-2) × 180 °(n ≥3的整数)的整数) 外 角 和多边形的外角和等于360°特别注意:与边数无关正 多边 形内角= ,外角= 四边形的分类及转化有一个角是90°(或对角线相等)有一对邻边相等(或对角线互相垂直) 平行四边形矩形菱形正方形一组邻边相等且一个内角为直角(或对角线互相垂直且相等)有一个角是90°(或对角线相等)有一对邻边相等(或对角线互相垂直) 课堂小结课堂小结 课后作业课后作业见《学练优》本章热点专练 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.