
拉扎维第三章部分答案题号正确资料.pdf
13页第三章 3.1 解得: 3.2 a) b) M2 线性区时 M1 线性区时 则输出电压范围为[0.269V,2V] 2 /225.134VAcox n 2 /35.38VAcox P K mAI rr Dn oo 20 5 . 0*1 . 0 11 21 )1 ()()( 2 1 2 2 2222DSnTHGSoxnD VVV L w cI )]3( 1 . 01 [)]}8 . 18 . 1(45. 07 . 0[)3{(100/225.1345 . 05 . 0 22 OUTOUTOUT VVVVAmA 40. 0 p 45. 0 n 1 . 0 n 2 . 0 p VVout793. 1 VmA V g g SBF m mb /194. 0 22 2 2 VmA L w CIg oxnDm /667. 3)(2 111 VmA L w CIg oxnDm /638. 1)(2 222 518 1 1222dsdsmbm out gggg R 900. 1 1 outmV RgA VmA L w CIg oxpDm /876. 0)(2 222 975 1 122dsdsm out ggg R K mAI r Dp o 10 5 . 0*2 . 0 11 2 575. 3 1 outmV RgA K mAI r Dp o 40 5 . 0*05. 0 11 2 K mAI r Dn o 20 5 . 0*1 . 0 11 1 VmA L w CIg oxnDm /667. 3)(2 111 1333 1 12dsds out gg R 89.48 1 outmV RgA 222dsthgs VVV8 . 0 2b outthout VVVV即 )](1 [)()( 2 1 2 22outDDpDDoutoxpD VVVV L w cI VVout2 111dsthgs VVV7 . 0 1in outthout VVVV即 )1 ()()( 2 1 2 11outnoutoxnD VV L w cI VVout269. 0 3.3 a) b) c) 进入线性区 50mV,则 3.4 a) 当输出电压为 1V 时: 当输出电压为 2.5V 时: b) 当输出电压为 1V 时: 当输出电压为 2.5V 时: c) 当输出电压为 1V 时: 当输出电压为 2.5V 时: VmA L w CIg oxnDm /181. 5)(2 111 362.10 1 DmV RgA D thinDD thinoxnD R VVV VV L w cI )( )()( 2 1 1 2 111 VVin137. 1 mA R VVV I D thinDD D 282. 1 )( 1 1 VmA L w CIg oxnDm /866. 5)(2 111 732.11 1 DmV RgA VVV dsatout 387. 005. 07 . 0137. 105. 0 mA R VV I D outDD D 307. 1 2 387. 03 VV L w C I V th oxn D in 141. 1 )( 2 1 1 VmAV L w C V I g DSoxn in D m /195. 5)( 11 364. 6 1 outmV RgA K VVV L w C V I r DSthinoxn DS D o 380. 1 )()( 1 )( 11 1 1 KrRR oDout 225. 1 1 D outDD thinoxnD R VV VV L w cI 2 111 )()( 2 1 VVin086. 1 VVin893. 0 D outDD D R VV I 1 111 )(2 L w CIg oxnDm mAID1 1 mAID25. 0 1 VmAgm/181. 5 1 VmAgm/591. 2 1 DmV RgA 1 362.10 1 DmV RgA 182. 5 1 DmV RgA 3.5 当 w/L=50/0.5 时: 当 w/L=100/1 时: 3.6 3.7 3.8 当管子处于线性区时: 当管子处于饱和区时: a) 无衬底偏置效应 b) noxnDnmn L w CIg)(2 Dnn on I r 1 Dn noxn n onmnVn I L w C rgA )(2 1 poxpDpmp L w CIg)(2 Dpp op I r 1 Dp poxp p opmpVp I L w C rgA )(2 1 3 .73 Vn A 6 .19 Vp A 6 .146 Vn A 2 .39 Vp A )()( 41 )1)(( 3 L w VVC I I V VVV L w Crg thgsoxn D D DS DSthgsoxnom )1 ( DSDSoxn gs D m VV L w C V I g )1 (41 )1)(( DS D DS DSthgsoxnom V I V VVV L w Crg )1]( 2 1 ))[(( 2 DSDSDSthgsoxnD VVVVV L w cI ] 2 1 ))[(()1)()(( 1 2 DSDSthgsoxnDSDSthgsoxn D DS o VVVV L w CVVVV L w C I V r ] 2 1 )[()1)(( )1 ( ] 2 1 ))[(()1)()(( )1 ()( 2 2 DSDSthgsDSDSthgs DSDS DSDSthgsoxnDSDSthgsoxn DSDSoxn om VVVVVVVV VV VVVV L w CVVVV L w C VV L w C rg )5 . 00( 15. 09 . 05 . 0 1 . 0 2 2 VV VV VV rg DS DSDS DSDS om )35 . 0(440VVVVrg DSDSom VVth849. 0)8 . 118 . 1(45. 07 . 0 )3351. 0(440VVVVrg DSDSom )351. 00( 15. 09298. 0351. 0 1 . 0 2 2 VV VV VV rg DS DSDS DSDS om 3.9 3.10 a) b) 3.11 a) )1)]}(22([{ )1)(( 0DSFSBFthgsoxn DSthgsoxn gs D m VVVV L w C VVV L w C V I g 时进入亚阈值 0 2 2 0 22 )( thgs F thgs SB VVVV V 2 0 )]}22([{ 1 FSBFthgsoxn D DS o VVV L w C I V r )]}22([{ )1 (2 )( )1 (2 0FSBFthgs DS thgs DS om VVV V VV V rg 0 2 2 0 22 )( 0 thgs F thgs SB VVVV V 2 222 )()( 2 1 thoutDDoxnD VVV L w cI 2 111 )()( 2 1 thinoxnD VV L w cI 21DD II 1thinout VVV VVin411. 1 236. 2)/()( 21 2 1 L w L w g g A m m V VVVV thindsat 711. 0 11 VmVVV dsatout 661. 005. 0 1 ] 2 1 )[()()()( 2 1 2 11 2 2221outoutthinoxnthoutDDoxnDD VVVV L w cVVV L w cII 120. 2 )()( )( 22 1 2 1 thoutDDoxn outoxn m m V VVV L w C V L w C g g A VVin412. 1 2 111 )()( 2 1 thinoxnD VV L w cI 2 222 )()( 2 1 thoutDDoxnD VVV L w cI 21DD II 1thinout VVV )22( 02FoutFthth VVV VVin373. 1 b) 3.12 VmAVV L w Cg thgsoxnm /033. 9)()( 1111 VmAVV L w Cg thgsoxnm /088. 4)()( 2222 VmA V VV L w Cg SBF thgsoxnmb /300. 1 22 1 )()( 2222 677. 1 22 1 mbm m V gg g A VVVV thindsat 673. 0 11 VmVVV dsatout 623. 005. 0 1 ] 2 1 )[()()()( 2 1 2 11 2 2221outoutthinoxnthoutDDoxnDD VVVV L w cVVV L w cII )22( 02FoutFthth VVVVVin4122. 1 120. 2 )()( )( 22 1 22 1 thoutDDoxn outoxn mbm m V VVV L w C V L w C gg g A VmAVV L w Cg thgsoxnm /600. 9)()( 1111 VmAVV L w Cg thgsoxnm /242. 4)()( 2222 VmA V VV L w Cg SBF thgsoxnmb /362. 1 22 1 )()( 2222 713. 1 22 1 mbm m V gg g A mAVV L w cI thinoxnD 1)()( 2 1 2 111 VVin310. 1 VVout610. 0 mAVVV L w cI thoutDDoxpD 25. 0)()( 2 1 2 222 2 . 5)( 2 L w 111 )(2 L w CIg oxnDm 222 )(2 L w CIg oxpDm 4 .10 )(2 )(2 22 11 2 1 L w CI L w CI g g A oxpD oxnD m m v 3.13 3.14 3.15 a) b) c) )( )()(2 )(2 )(2 )(2 1 1 21 11 22 11 2 1 sD D oxpsD oxnD oxpD oxnD m 。
