
福建省仙游县2023-2024学年高二上数学期末教学质量检测试题含解析.doc
15页福建省仙游县2023-2024学年高二上数学期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为( )A.=1 B.=1C.=1 D.=12.已知函数对于任意的满足,其中是函数的导函数,则下列各式正确的是()A. B.C. D.3.已知双曲线的对称轴为坐标轴,一条渐近线为,则双曲线的离心率为A.或 B.或C.或 D.或4.设数列的前项和为,且,则()A. B.C. D.5.已知直线与直线平行,则实数a值为()A.1 B.C.1或 D.6.函数在点处的切线方程的斜率是()A. B.C. D.7.下列说法中正确的是A.命题“若,则”的逆命题为真命题B.若为假命题,则均为假命题C.若为假命题,则为真命题D.命题“若两个平面向量满足,则不共线”的否命题是真命题.8.已知点为双曲线的左顶点,点和点在双曲线的右分支上,是等边三角形,则的面积是A. B.C. D.9.某软件研发公司对某软件进行升级,主要是对软件程序中的某序列重新编辑,编辑新序列为,它的第项为,若序列的所有项都是1,且,.记数列的前项和、前项积分别为,,若,则的最小值为( )A.2 B.3C.4 D.510.抛物线的焦点坐标是A. B.C. D.11.双曲线:(,)的左、右焦点分别为、,点在双曲线上,,,则的离心率为( )A. B.2C. D.12.古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.14.已知直线,抛物线上一动点到直线l的距离为d,则的最小值是______15.已知圆C:和点,若点N为圆C上一动点,点Q为平面上一点且,则Q点纵坐标的最大值为______16.已知点,平面过原点,且垂直于向量,则点到平面的距离是_________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知数列满足.(1)求数列的通项公式;(2)设,数列的前项和为,证明:当时,.18.(12分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围19.(12分)已知函数,记f(x)的导数为f′(x).若曲线f(x)在点(1,f(1))处的切线斜率为﹣3,且x=2时y=f(x)有极值,(Ⅰ)求函数f(x)的解析式;(Ⅱ)求函数f(x)在[﹣1,1]上的最大值和最小值20.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,满足(2a﹣b)sinA+(2b﹣a)sinB=2csinC.(1)求角C的大小;(2)若cosA=,求的值.21.(12分)已知三角形的三个顶点,求边所在直线的方程,以及该边上中线所在直线的方程22.(10分)如图,已知矩形ABCD所在平面外一点P,平面ABCD,E、F分别是AB、PC的中点求证:(1)共面;(2)求证:参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、D【解析】根据双曲线的性质求解即可.【详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.2、C【解析】令,结合题意可得,利用导数讨论函数的单调性,进而得出,变形即可得出结果.【详解】令,则,又,所以,令,令,所以函数在上单调递减,在单调递增,所以,即,则.故选:C3、B【解析】分双曲线的焦点在轴上和在轴上两种情况讨论,求出的值,利用可求得双曲线的离心率的值.【详解】若焦点在轴上,则有,则双曲线的离心率为;若焦点在轴上,则有,则,则双曲线的离心率为.综上所述,双曲线的离心率为或.故选:B.【点睛】本题考查双曲线离心率的求解,在双曲线的焦点位置不确定的情况下,要对双曲线的焦点位置进行分类讨论,考查计算能力,属于基础题.4、C【解析】利用,把代入中,即可求出答案.【详解】当时,.当时,.故选:C.5、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A6、D【解析】求解导函数,再由导数的几何意义得切线的斜率.【详解】求导得,由导数的几何意义得,所以函数在处切线的斜率为.故选:D7、D【解析】A中,利用四种命题的的真假判断即可;B、C中,命题“”为假命题时,、至少有一个为假命题;D中,写出该命题的否命题,再判断它的真假性【详解】对于A,命题“若,则”的逆命题是:若,则;因为也成立.所以A不正确;对于B,命题“”为假命题时,、至少有一个为假命题,所以B错误;C错误;对于D,“平面向量满足”,则不共线的否命题是,若“平面向量满足”,则共线;由知:,一定有,,所以共线,D正确.故选:D.【点睛】本题考查了命题的真假性判断问题,也考查了推理与判断能力,是基础题8、C【解析】设点在轴上方,由是等边三角形得直线斜率.又直线过点,故方程为 .代入双曲线方程,得点的坐标为 .同理可得,点的坐标为.故的面积为,选C.9、C【解析】先利用序列的所有项都是1,得到,整理后得到是等比数列,进而求出公比和首项,从而求出和,利用,列出不等式,求出,从而得到的最小值【详解】因为,,所以,又序列的所有项都是1,所以它的第项,所以,所以数列是等比数列,又,,所以公比,.所以,,,要,即,即,所以,所以,,所以最小值为4.故选:C.10、D【解析】根据抛物线的焦点坐标为可知,抛物线即的焦点坐标为,故选D.考点:抛物线的标准方程及其几何性质.11、C【解析】根据双曲线定义、余弦定理,结合题意,求得关系,即可求得离心率.【详解】根据题意,作图如下:不妨设,则,,①;在△中,由余弦定理可得:,代值得:,②;联立①②两式可得:;在△和△中,由,可得:,整理得:,③;联立②③可得:,又,故可得:,则,则,故离心率为.故选:C.12、C【解析】对方程进行化简可得双曲线上一点到定点与定直线之比为常数,进而可得结果.【详解】已知方程可以变形为,即,∴其表示双曲线上一点到定点与定直线之比为常数,又由,可得,故选:C.二、填空题:本题共4小题,每小题5分,共20分。
13、【解析】根据直线和双曲线的对称性,结合圆的性质、双曲线的定义、三角形面积公式、双曲线离心率公式进行求解即可.【详解】由直线与双曲线的对称性可知,点与点关于原点对称,在三角形中,,所以, 是以为直径的圆与双曲线的交点,不妨设在第一象限,,因为圆是以为直径,所以圆的半径为,因为点在圆上,也在双曲线上,所以有,联立化简可得,整理得,,所以,由所以,又因为,联立可得,,因为为圆的直径,所以,即,,所以离心率.故答案为:【点睛】关键点睛:利用直线和双曲线的对称性,结合圆的性质进行求解是解题的关键.14、##【解析】作直线l,抛物线准线且交y轴于A点,根据抛物线定义有,进而判断目标式最小时的位置关系,结合点线距离公式求最小值.【详解】如下图示:若直线l,抛物线准线且交y轴于A点,则,,由抛物线定义知:,则,所以,要使目标式最小,即最小,当共线时,又,此时.故答案为:.15、【解析】设出点N的坐标,探求出点Q的轨迹,再求出轨迹上在x轴上方且距离x轴最远的点的纵坐标表达式,借助函数最值计算作答.【详解】圆C:的圆心,半径,圆C与x轴相切,依题意,点M在圆C上,设点,则,线段MN中点, 因,则点Q的轨迹是以线段MN为直径的圆(除点M,N外),这个轨迹在x轴上方,于是得这个轨迹上的点到x轴的最大距离为:令,于是得,当,即时,,所以Q点纵坐标的最大值为.故答案为:【点睛】结论点睛:圆上的点到定直线距离的最大值等于圆心到该直线距离加半径.16、【解析】确定,,利用点到平面的距离为,即可求得结论.【详解】由题意,,,设与的夹角为,则所以点到平面的距离为故答案为:三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1);(2)证明见解析.【解析】(1)利用前n项和与的关系即求;(2)由题知,然后利用裂项相消法即证.【小问1详解】由,可得,两式相减可得,当时,,满足,所以.【小问2详解】∵,因为,所以当时,.18、(1)(2)【解析】(1)由导数几何意义得切线斜率为,再根据点斜式写切线方程;(2)由函数图像可知,极大值大于零且极小值小于零,解不等式可得c的取值范围试题解析:解:(I)由,得因为,,所以曲线在点处的切线方程为(II)当时,,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,,,使得由的单调性知,当且仅当时,函数有三个不同零点19、(Ⅰ)f(x)=x3﹣3x2+1;(Ⅱ)最大值为1,最小值为﹣3【解析】(Ⅰ)求导可得f′(x)的解析式,根据导数的几何意义,可得k=f′(1)=-3,又在x=2处有极值,所以f′(2)=0,即可求得a,b的值,即可得答案;(Ⅱ)由(Ⅰ)可得f′(x)的解析式,令f′(x)=0,解得x=0或x=2,讨论f(x)在﹣1<x<0,0<x<1上的单调性,即可求得f(x)的极值,检验边界值,即可得答案.【详解】(Ⅰ)由题意得:f′(x)=3x2+2ax+b,所以k=f′(1)=3+2a+b=﹣3,f′(2)=12+4a+b=0,解得a=﹣3,b=0,所以f(x)=x3﹣3x2+1;(Ⅱ)由(Ⅰ)知,令f′(x)=3x2﹣6x=0,解得x=0或x=2,当﹣1<x<0时,f′(x)>0,f(x)在(﹣1,0)是增函数,当0<x<1时,f′(x)<0,f(x)在(0,1)是减函数,所以f(x)的极大值为f(0)=1,又f(1)=﹣1,f(﹣1)=﹣3,所以f(x)在[﹣1,1]上的最大值为1,最小值为﹣320、(1)(2)【解析】(1)利用正弦定理、余弦定理化简已。
