
宝鸡市重点中学2025届九年级数学第一学期开学综合测试试题【含答案】.doc
24页学校________________班级____________姓名____________考场____________准考证号 …………………………密…………封…………线…………内…………不…………要…………答…………题…………………………宝鸡市重点中学2025届九年级数学第一学期开学综合测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)计算的结果为( )A.±3 B.-3 C.3 D.92、(4分)下列函数的图象经过,且随的增大而减小的是( )A. B. C. D.3、(4分)某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性( )A.甲组比乙组的成绩稳定 B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定 D.无法确定4、(4分)若二次根式在实数范围内有意义,则a的取值范围是( )A. B. C.a>1 D.a<15、(4分)直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为( )A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)6、(4分)如图,BP平分∠ABC,D为BP上一点,E,F分别在BA,BC上,且满足DE=DF,若∠BED=140°,则∠BFD的度数是( )A.40° B.50° C.60° D.70°7、(4分)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大 ④图象不经过第一象限 ⑤图象是与y=﹣x+2平行的直线,其中正确说法有( )A.5个 B.4个 C.3个 D.2个8、(4分)已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )A.36 B.30 C.24 D.20二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)把抛物线沿轴向上平移1个单位,得到的抛物线解析式为______.10、(4分)如图,P是矩形ABCD内一点,,,,则当线段DP最短时, ________.11、(4分)不等式4x﹣6≥7x﹣15的正整数解的个数是______.12、(4分)将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.13、(4分)在平面直角坐标系中有一点,则点P到原点O的距离是________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,直线与x轴交于点,直线与x轴、y轴分别交于B、C两点,并与直线相交于点D,若.求点D的坐标;求出四边形AOCD的面积;若E为x轴上一点,且为等腰三角形,写出点E的坐标直接写出答案.15、(8分)某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如下表所示:汽车型号安全性能省油效能外观吸引力内部配备A3123B3222(得分说明:3分﹣﹣极佳,2分﹣﹣良好,1分﹣﹣尚可接受)(1)技术员认为安全性能、省油效能、外观吸引力、内部配备这四项的占比分别为30%,30%,20%,20%,并由此计算得到A型汽车的综合得分为2.2,B型汽车的综合得分为_____;(2)请你写出一种各项的占比方式,使得A型汽车的综合得分高于B型汽车的综合得分.(说明:每一项的占比大于0,各项占比的和为100%)答:安全性能:_____,省油效能:_____,外观吸引力:_____,内部配备:_____.16、(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.17、(10分)已知函数y=(2m+1)x+m﹣3;(1)若函数图象经过原点,求m的值;(2)若函数图象在y轴的截距为﹣2,求m的值;(3)若函数的图象平行直线y=3x﹣3,求m的值;(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.18、(10分)如图,在平面直角坐标系中,已知点和点.(1)求直线所对应的函数表达式;(2)设直线与直线相交于点,求的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如果关于的一次函数的图像不经过第三象限,那么的取值范围________.20、(4分)如图,正方形ABCD边长为1,若以正方形的边AB为对角线作第二个正方形AEBO1,再以边BE为对角线作第三个正方形EFBO2……如此作下去,则所作的第n个正方形面积Sn=________21、(4分)如图,正方形的边长为12,点、分别在、上,若,且,则______.22、(4分)如图.在平面直角坐标系中,函数(其中,)的图象经过的顶点.函数(其中)的图象经过顶点,轴,的面积为.则的值为____.23、(4分)如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为 .二、解答题(本大题共3个小题,共30分)24、(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表: A型 B型 价格(万元/台) a b 处理污水量(吨/月) 220 180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.25、(10分)解一元二次方程.(1) (2) 26、(12分)化简求值:÷•,其中x=-2参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据=|a|进行计算即可.【详解】=|-3|=3,故选:C.此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.2、D【解析】根据一次函数的性质,k<0,y随x的增大而减小,找出各选项中k值小于0的选项即可.再把点代入,符合的函数解析式即为答案.【详解】A. ,当x=0时,y=0,图象不经过,不符合题意;B. ,,当x=0时,y=-1,图象不经过,不符合题意;C. ,k=2>0,随的增大而增大,不符合题意;D. y=-x+1,当x=0时,y=1,图象经过,k=-1<0,随的增大而减小本题考查了一次函数图像的性质,判断函数图像是否经过点,把点的x坐标代入求y坐标,如果y值相等则函数图像经过点,如不相等则不经过,当k>o, y随的增大而增大,,当k<0,随的增大而减小.3、B【解析】试题分析:方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越小,说明数据的波动越小,越稳定.因此,∵30<36,∴乙组比甲组的成绩稳定.故选B.4、A【解析】分析:根据二次根式有意义的条件可得a-1≥0,再解不等式即可.详解:由题意得:a-1≥0,解得:a≥1,故选A.点睛:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5、C【解析】根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【详解】解:∵点P(x,y)在第三象限,∴P点横纵坐标都是负数,∵P到x轴和y轴的距离分别为3、4,∴点P的坐标为(-4,-3).故选:C.此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.6、A【解析】作DG⊥AB于G,DH⊥BC于H,根据角平分线的性质得到DH=DG,证明Rt△DEG≌Rt△DFH,得到∠DEG=∠DFH,根据互为邻补角的性质得到答案.【详解】作DG⊥AB于G,DH⊥BC于H,∵D是∠ABC平分线上一点,DG⊥AB,DH⊥BC,∴DH=DG,在Rt△DEG和Rt△DFH中, ∴Rt△DEG≌Rt△DFH(HL),∴∠DEG=∠DFH,又∠DEG+∠BED=180°,∴∠BFD+∠BED=180°,∴∠BFD的度数=180°-140°=40°,故选:A.此题考查角平分线的性质,全等三角形的判定与性质,邻补角的性质,解题关键在于作辅助线7、B【解析】试题分析:根据一次函数的性质和图象上点的坐标特征解答.解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.考点:一次函数的性质.8、D【解析】解:如图所示,根据题意得:AO=×8=4,BO=×6=1.∵四边形ABCD是菱形,∴AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB==5,∴此菱形的周长为:5×4=2.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】抛物线图像向上平移一个单位,即纵坐标减1,然后整理即可完成解答.【详解】解:由题意得:,即本题主要考查了函数图像的平移规律,即 “左右横,上下纵,正减负加”的理解和应用是解题的关键.10、【解析】因为AP⊥BP,则P点在AB为直径的半圆上,当P点为AB的中点E与D点连线与半圆AB的交点时,DP最短,求出此时PC的长度便可.【详解】解:以AB为直径作半圆O,连接OD,与半圆O交于点P′,当点P与P′重合时,DP最短,则AO=OP′=OB=AB=2,∵AD=2,∠BAD=90°,∴OD=2,∠ADC=∠AOD=∠ODC=45°,∴DP′=OD-OP′=2-2,过P′作P′E⊥CD于点E,则P′E=DE=DP′=2-,∴CE=CD-DE=+2,∴CP′==.故答案为.本题是一个矩形的综合题,主要考查了矩形的性质,勾股定理,圆的性质,关键是作辅助圆和构造直角三角形.11、3【解析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可【详解】不等式的解集是x≤3。












