
2025学年江西省南昌市八一中学、洪都中学、十七中三校数学高二上期末联考模拟试题含解析.doc
17页2025学年江西省南昌市八一中学、洪都中学、十七中三校数学高二上期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内写在试题卷、草稿纸上均无效2.答题前,认真阅读答题纸上的《注意事项》,按规定答题一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.参加抗疫的300名医务人员,编号为1,2,…,300.为了解这300名医务人员的年龄情况,现用系统抽样的方法从中抽取15名医务人员的年龄进行调查.若抽到的第一个编号为6,则抽到的第二个编号为( )A.21 B.26C.31 D.362.椭圆的焦点坐标为()A. B.C. D.3.已知椭圆的离心率为,则()A. B.C. D.4.已知双曲线的一条渐近线方程为,它的焦距为2,则双曲线的方程为()A B.C. D.5.已知点P是双曲线上的动点,过原点O的直线l与双曲线分别相交于M、N两点,则的最小值为()A.4 B.3C.2 D.16.关于实数a,b,c,下列说法正确的是()A.如果,则,,成等差数列B.如果,则,,成等比数列C.如果,则,,成等差数列D.如果,则,,成等差数列7.入冬以来,梁老师准备了4个不同的烤火炉,全部分发给楼的三个办公室(每层楼各有一个办公室).1,2楼的老师反映办公室有点冷,所以1,2楼的每个办公室至少需要1个烤火队,3楼老师表示不要也可以.则梁老师共有多少种分发烤火炉的方法()A.108 B.36C.50 D.868.在二面角的棱上有两个点、,线段、分别在这个二面角的两个面内,并且都垂直于棱,若,,,,则这个二面角的大小为( )A. B.C. D.9.已知平面的一个法向量为=(2,-2,4),=(-1,1,-2),则AB所在直线l与平面的位置关系为( )A.l⊥ B.C.l与相交但不垂直 D.l∥10.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个11.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为( )A. B.C. D.12.如果一个矩形长与宽的比值为,那么称该矩形为黄金矩形.如图,已知是黄金矩形,,分别在边,上,且也是黄金矩形.若在矩形内任取一点,则该点取自黄金矩形内的概率为( )A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.过抛物线的准线上任意一点做抛物线的切线,切点分别为,则A点到准线的距离与点到准线的距离之和的最小值为___________14.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1: + = 1和双曲线C2: - =1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0 ,P4重合,则光线从P0到P4所经过的路程为 _________ . 15.已知等差数列,的前n项和分别为,若,则=______16.点到抛物线上的点的距离的最小值为________.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.18.(12分)已知函数在处取得极值7(1)求的值;(2)求函数在区间上的最大值19.(12分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,20.(12分)已知等差数列满足,(1)求的通项公式;(2)若等比数列的前n项和为,且,,,求满足的n的最大值21.(12分)已知在等差数列中,,(1)求数列的通项公式;(2)若的前n项和为,且,,求数列的前n项和22.(10分)如图,四边形为矩形,,且平面平面.(1)若,分别是,的中点,求证:平面;(2)若是等边三角形,求平面与平面夹角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】将300个数编号:001,002,003,,3000,再平均分为15个小组,然后按系统抽样方法得解.【详解】将300个数编号:001,002,003,,3000,再平均分为15个小组,则第一编号为006,第二个编号为.故选:B.2、B【解析】根据方程可得,且焦点轴上,然后可得答案.【详解】由椭圆的方程可得,且焦点在轴上,所以,即,故焦点坐标为故选:B3、D【解析】由离心率及椭圆参数关系可得,进而可得.【详解】因为,则,所以.故选:D4、B【解析】根据双曲线的一条渐近线方程为,可得,再结合焦距为2和,求得,即可得解.【详解】解:因为双曲线的一条渐近线方程为,所以,即,又因焦距为2,即,即,因为,所以,所以,所以双曲线的方程为.故选:B.5、C【解析】根据双曲线的对称性可得为的中点,即可得到,再根据双曲线的性质计算可得;【详解】解:根据双曲线的对称性可知为的中点,所以,又在上,所以,当且仅当在双曲线的顶点时取等号,所以故选:C6、B【解析】根据给定条件结合取特值、推理计算等方法逐一分析各个选项并判断即可作答.【详解】对于A,若,取,而,即,,不成等差数列,A不正确;对于B,若,则,即,,成等比数列,B正确;对于C,若,取,而,,,不成等差数列,C不正确;对于D,a,b,c是实数,若,显然都可以为负数或者0,此时a,b,c无对数,D不正确.故选:B7、C【解析】运用分类计数原理,结合组合数定义进行求解即可.【详解】当3楼不要烤火炉时,不同的分发烤火炉的方法为:;当3楼需要1个烤火炉时,不同的分发烤火炉的方法为:;当3楼需要2个烤火炉时,不同的分发烤火炉的方法为:,所以分发烤火炉的方法总数为:,故选:C【点睛】关键点睛:运用分类计数原理是解题的关键.8、C【解析】设这个二面角的度数为,由题意得,从而得到,由此能求出结果.【详解】设这个二面角的度数为,由题意得,,,解得,∴,∴这个二面角的度数为,故选:C.【点睛】本题考查利用向量的几何运算以及数量积研究面面角.9、A【解析】由向量与平面法向量的关系判断直线与平面的位置关系【详解】因为,所以,所以故选:A10、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.11、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A12、B【解析】由几何概型的面积型,只需求小矩形的面积和大矩形面积之比.【详解】由题意,不妨设,则,又也是黄金矩形,则,又,解得,于是大矩形面积为:,小矩形的面积为,由几何概型的面积型,概率为若在矩形内任取一点,则该点取自黄金矩形内的概率为:.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
13、8【解析】设,,,,由可得,根据导数的几何意义求得两切线的方程,联立求得点的坐标,再根到准线的距离转化为到焦点的距离,三点共线时距离最小,进而求出最小值【详解】解:设,,,,由可得,所以,所以直线,的方程分别为:,,联立,解得,即,,又有在准线上,所以,所以,设直线的方程为:,代入抛物线的方程可得:,可得,所以可得,即直线恒过点,即直线恒过焦点,即直的方程为:,代入抛物线的方程:,,所以,点到准线的距离与点到准线的距离之和,所以当时,距离之和最小且为8,这时直线平行于轴故答案为:814、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:15、【解析】利用等差数列的性质和等差数列的前项和公式可得,再令即可求解.【详解】由等差数列的性质和等差数列的前项和公式可得:因为,故答案为:【点睛】关键点点睛:本题解题的关键是利用等差数列的性质可得,再转化为前项和公式的形式,代入的值即可.16、【解析】设出抛物线上点的坐标,利用两点间距离公式,配方求出最小值.【详解】设抛物线上的点坐标,则,当时,取得最小值,且最小值为.故答案为:三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤17、(1)证明见解析;(2)【解析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【详解】解:(1)连接,∵ ,是中点,∴,,又,,∴,∴,∵ ,∴,∴ ,,平面,∴ 平面;(2)∵点在棱上,且,,为的中点.∴ ,∴ 由余弦定理得,即,∴,由(1)平面,设点到平面的距离为 ∴,即,解得: 所以点到平面的距离为.18、(1);(2).【解析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到,导数的方法研究其单调性,进而可求出最值.【详解】(1)因为,所以,又函数在处取得极值7,,解得;,所以,由得或;由得;满足题意;(2)又,由(1)得在上单调递增,在上单调递减,因此【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值.19、 (1) a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f ′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f ′(x)=aex–由题设知,f ′(2)=0,所以a=从而f(x)=,f ′(x)=当0












