好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

科技创新2030—新一代人工智能.docx

14页
  • 卖家[上传人]:cl****1
  • 文档编号:537896289
  • 上传时间:2023-03-14
  • 文档格式:DOCX
  • 文档大小:23.70KB
  • / 14 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 科技创新2030—新一代人工智能附件科技创新 2030—“新一代人工智能”重大项目 2020 年度项目申报指南为落实《新一代人工智能发展规划》,启动实施科技创新 2030— “新一代人工智能”重大项目根据重大项目实施方案的部署,科技 部组织编制了 2020 年度项目申报指南,现予以正式发布本重大项目的总体目标是:以推动人工智能技术持续创新和与经 济社会深度融合为主线,按照并跑、领跑两步走战略,围绕大数据智 能、跨媒体智能、群体智能、混合增强智能、自主智能系统等五大方 向持续攻关,从基础理论、支撑体系、关键技术、创新应用四个层面 构筑知识群、技术群和产品群的生态环境,抢占人工智能技术制高点, 妥善应对可能带来的新问题和新挑战,促进大众创业万众创新,使人 工智能成为智能经济社会发展的强大引擎2020 年度项目申报指南在新一代人工智能基础理论、共性关键技 术、新型感知与智能芯片、人工智能提高经济社会发展水平创新应用 等 4 个技术方向启动22 个研究任务,拟安排国拨经费概算5.6 亿元 项目鼓励充分发挥地方和市场作用,强化产学研用紧密结合,调动社 会资源投入新一代人工智能研发指南技术方向“2.新一代人工智能 共性关键技术”和“4.人工智能提高经济社会—1— 发展水平创新应用”所属任务的项目,配套经费与国拨经费比例 不低于 2:1;指南技术方向“3.新型感知与智能芯片”所属任务的项目, 配套经费与国拨经费比例不低于1:1。

      各研究任务要求以项目为单元整体组织申报,项目须覆盖所申报 指南方向二级标题(例如:1.1)下的所有研究内容并实现对应的研究 目标除特殊说明外,各研究任务拟支持项目数均为 1~2 项,每个项 目下设课题数不超过5 个,所含参研单位总数不超过10家,实施周期 为 3~5年项目设1名项目负责人,项目中的每个课题设1 名课题负 责人基础理论部分研究任务 1.1—1.5 的申报要求详见具体申报说明 指南中“拟支持项目数为 1~2 项”是指:在同一研究方向下,当 出现申报项目评审结果前两位评分评价相近、技术路线明显不同的情 况时,可同时支持这 2 个项目2 个项目将采取分两个阶段支持的方 式建立动态调整机制,第一阶段完成后将对 2 个项目执行情况进行 评估,根据评估结果确定后续支持方式1.新一代人工智能基础理论1.1 脑结构和功能启发的新型神经网络模型研究内容:针对当前神经网络计算模型依赖大量标注样本、鲁棒 性和适应性差、可解释性不足、能效比低等局限,研究受特定神经环 路启发,发展具有记忆、稀疏编码、自适应等特征的新一代神经网络 模型;研究大规模复杂网络的高效学习和计算方法,发展复杂网络学 习泛化性理论;设计具有自适应能力的神经网络结构,突—2—破自学习、小样本学习、可解释性等智能新理论与新方法。

      考核指标:构建具备学习、记忆等认知能力的大规模神经网络计 算模型;具备自适应可迁移能力,噪声环境下的模型性能有数量级提 升;设计自学习、小样本学习方法,相同性能条件下所需标注数据数 量级减少;通过知识归纳和迁移,对模型结果和性能提升具备可解释 性;开源新型神经网络计算数据、模型和代码等申报说明:本任务拟支持项目数不超过 4 项,每个项目下设课题 数不超过2个,所含参研单位总数不超过2 家1.2 基于脉冲神经网络的感知—学习—决策神经网络模型 研究内容:构建以脉冲神经元和脉冲信息表达为核心的脉冲神经 网络计算模型,研究基于脉冲时空模式的监督学习、强化学习、无监 督学习和元学习等多种类脑学习机制,建立具备生物合理性和生物可 解释性的多尺度脉冲神经网络学习算法;充分借鉴脉冲神经工作机制, 研究面向多模态、不确定信息的感知、学习、决策的贝叶斯理论和模 型,实现神经元编码、学习和记忆融合的视听觉感知—学习—决策等 复杂环路神经网络功能,以无人机、机器人等为载体探索自主智能实 现途径考核指标:感知—学习—决策神经网络计算模型要求具备生物合 理性与生物可解释性;模拟学习和记忆融合的自主感知—学习—决策 协同计算,能够支持基于复杂视、听、触、嗅觉等感知的类脑自主学 习与决策,具备多模态信息整合、知识泛化和概念学习能力,同一模 型支持 5种以上学习、记忆和决策任务;构建—3—支持具有多尺度生物合理性的大规模类脑脉冲神经网络框架,开 源类脑学习与决策脉冲神经网络数据、模型和代码等。

      申报说明:本任务拟支持项目数不超过 4 项,每个项目下设课题 数不超过2个,所含参研单位总数不超过2 家1.3 认知计算基础理论与方法研究研究内容:聚焦开放、动态、真实环境下推理与决策重大问题, 开展常识学习、直觉推理、自主演化、因果分析等理论和方法研究, 重点突破刻画环境自适应、不完全推理、自主学习、对抗学习、智能 体协同优化等特点的认知计算理论和算法,在跨媒体智能、自主智能、 群体智能或混合增强智能等智能形态方面实现应用验证考核指标:形成能适应多种智能形态的认知计算框架,构建大规 模、共享开放的跨媒体常识、客观规律和时空事件等知识库,提出并 实现通用认知测试方法;在对抗决策、人机混合或自主学习中形成和 常识结合的认知理论,建立相应算法在开放环境下鲁棒性显著提升的 验证环境;建立具有国际影响力的开放认知智能水平评测体系申报说明:本任务拟支持项目数不超过 4 项,每个项目下设课题 数不超过2个,所含参研单位总数不超过2 家1.4 以自然语言为核心的语义理解研究研究内容:针对从互联网海量文本、自然标注大数据和多模态关 联数据获取开放域知识等问题,研究基于知识图谱、事理图—4—谱等大规模多元知识的自然语言语义分析方法,研究可理解、可 解释文本生成方法,研究通过与环境和社会跨模态交互的语言进化计 算模型,突破层次深、鲁棒性强、对稀缺语料适应能力好的中文自然 语言理解技术,为认知智能提供通用语言模型、生成方法和基本工具 支撑。

      考核指标:从互联网海量文本中自动获取知识和语义分析能力得 到可验证的数量级提高;自主提出 5 个以上语言文本分析和生成任务, 达到与人类可比的认知水平;形成跨模态表达的语言理解基本模型, 形成具有国际影响力的跨模态实体、事件理解、对话理解基准测试集; 开源基准学习和测试集合、模型和语言理解基本工具等申报说明:本任务拟支持项目数不超过 4 项,每个项目下设课题 数不超过2个,所含参研单位总数不超过2 家1.5 高级机器学习理论研究 研究内容:研究具有自组织、自学习、自适应、自涌现等特点的 机器学习新理论;研究不完全信息下推理决策与演化完善的学习理论; 研究具有可解释性的机器学习理论和方法;研究小样本学习、深度强 化学习、无监督学习、半监督学习、迁移学习、表征学习等理论和模 型;研究量子机器学习、对偶学习、分布式学习、主动学习、元学习 及其它高级机器学习基础理论和方法等考核指标:围绕上述研究内容和具体需求场景,形成从数据、模 型到算法的理论成果,建立可验证的系统,并开源数据、模型—5—和代码等申报说明:本任务为开放性研究项目,申请者可就该方向中涉及 的部分研究内容进行申报,提出明确的任务目标和具体的考核指标。

      项目负责人需为1980年1月1日后出生的青年研究人员该研究任务 拟支持项目数不超过10 项,项目不下设课题,每个项目所含参研单位 总数不超过 2家2.新一代人工智能共性关键技术2.1 人工智能安全理论及验证平台研究内容:针对深度学习等模型,研究可信度量方法和安全形式 化验证方法,支持复杂智能系统内在结构与行为功能的一致性、可达 性、安全性判定;研究包含智能组件的软件系统的模型化开发和验证 技术以及基于动态数据收集的安全认证模型与方法,研制建模、开发与验证一体化工具;在黑盒与白盒不同场景下,研究基于差分测试、 变异测试、动态符号执行测试等软件测试技术的智能系统测试方法和 测试样本的自动生成等关键技术;针对恶意样本等攻击手段,研究具 有可扩展性的可认证鲁棒学习模型,研究新型的对抗实例训练策略及 验证问题关系,提高测量防御技术的有效性;研究软硬件一体的安全 攸关复杂智能系统的安全验证技术、优化技术和硬件架构安全适配 研究基于验证与测试技术的智能系统全周期安全评估、鲁棒性验证和 性能保障技术与方法,形成相应的认证规范流程考核指标:建立多领域技术融合、支持大规模人工智能系统—6— 自主安全防御的理论体系;提出不少于 3 种具有群体智能鲁棒性 构造、恶意攻击自动识别的安全自动化攻防技术;突破安全关键复杂 智能系统的可信验证技术,支持不少于 3 种常见深度学习模型及 1 种 常见开发框架的安全结构度量和形式化验证,参数规模不低于百万级; 突破软硬件一体验证与优化技术,支持不少于 3 种硬件环境。

      建立支 持主流大数据集上亿级神经网络参数的智能安全防御与性能验证测试, 实现准实时运行响应;开发一套针对人工智能系统的攻击防御平台, 支持多种针对人工智能系统的攻防对抗推演2.2 以中文为核心的多语种自动翻译研究研究内容:聚焦语言大互通的需要,研发以中文为核心的多语种、 多模态口语自动翻译技术,重点突破面向数据和专家资源稀缺的小语 种语音及语言技术研发的无监督/弱监督学习、迁移学习、端到端语音 翻译等技术,突破具备场景感知能力的图像光学字符识别、翻译和图 像生成技术,实现高可用近远场口语语音识别和语音合成技术,以及 相关语种到汉语之间的双向互译技术,并完成相应的语音翻译和图片 翻译的云服务在智能终端上的应用,实现政务、教育、媒体、商务、 旅游、就医等典型场景的口语自动翻译服务考核指标:在即时和近远场翻译场景下,实现哈萨克语、阿拉伯 语、俄语、泰语、马来语、越南语、印尼语、维吾尔语等多个小语种 到汉语之间的双向语音翻译和图片翻译,形成面向多种应用场景的自动翻译系统和验证应用;小语种近场口语翻译的忠 实度和完整度可达到人类同传水平;近距离、少噪声条件下,印刷品 识别准确率达到 98%以上,翻译忠实度超过90%;远距离、多噪声条 件下,非印刷品识别准确率达到90%以上,翻译忠实度超过80%。

      2.3 安全可信的人机共驾系统研究内容:针对动态、开放的真实交通环境下无人驾驶车辆适应 性差、安全性弱等问题,研究人类驾驶员和智能驾驶系统同时在环共 享驾驶权的人机共驾方法,实现人在回路的数据、信息、语义及知识 等多层次的人机交互与协同;建立人机协同的多模态感知、意图理解 的计算模型,实现人机一致性的情境理解与预测、决策与控制;研究 可解释、可信的自主决策与可解译的决策过程模型与算法,形成人机 混合决策的评估理论与方法;构建人机共驾的云学习平台和支撑 环境,实现安全、可信、舒适的智能驾驶考核指标:提出并验证针对系统对驾驶人行为感知准确率、对驾 驶人状态估计与意图预测准确率、常规工况下驾驶行为的动态约束及 反馈频率、紧急工况下控制权分配与失效安全策略计算周期等关键指 标;人机共驾系统中驾驶人对控制系统的预见性以及满意度的主观评 分在 8 分以上(10分制);搭建分析人机耦合与人机共驾机理的软件 虚拟仿真平台 1 套、硬件在环半实物仿真平台 1 套、人机共驾云学习 平台 1 套,核心技术在权威国际评测中—8—达到先进水平,提交相关国际标准提案1~2 项2.4 无人集群系统自主协同关键技术研究及验证研究内容:针对高动态、不确定、资源受限等复杂环境,面向协 同区域搜索、集群优化调度等多任务应用需求,研究无人集群系统的 通用/开放式体系架构和建模方法,提升无人集群系统的场景适应能力 和异构无人自主系统间的互操作能力;研究不确定和资源受限条件下 高质量传感数据处理、共享及多源信息融合技术,提升无人集群系统 的分布式态势感知与认知能力;研究可引导、可信任、可进化的集群 无人系统规划、决策与控制技术,提升无人集群系统的鲁棒性和智能 化水平;面向灾害救援、环。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.