
2022年秋新教材高中数学课时跟踪检测二分类加法计数原理与分步乘法计数原理的应用新人教A版选择性必修第三册.doc
5页课时跟踪检测(二) 分类加法计数原理与分步乘法计数原理的应用1.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( )A.25 B.20C.16 D.12解析:选C 分两步:先选十位,再选个位,可组成无重复数字的两位数的个数为4×4=16.2.把3封信投到4个信箱,所有可能的投法共有( )A.24种 B.4种C.43种 D.34种解析:选C 第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法,只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.3.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( )A.9 B.14C.15 D.21解析:选B 因为P={x,1},Q={y,1,2},且P⊆Q,所以x∈{y,2}.所以当x=2时,y=3,4,5,6,7,8,9,有7种情况;当x=y时,x=3,4,5,6,7,8,9,有7种情况.共有7+7=14种情况.即这样的点的个数为14.4.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为( )A.2 B.4C.6 D.8解析:选D 第一类,公差大于0,有①1,2,3,②2,3,4,③3,4,5,④1,3,5,共4个等差数列;第二类,公差小于0,也有4个.根据分类加法计数原理可知,共有4+4=8个不同的等差数列.5.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有位车主上网自编号码,第一个号码(从左到右)想在数字3,5,6,8,9中选择,其他号码想在1,3,6,9中选择,则他的车牌号码的所有可能情况有( )A.180种 B.360种C.720种 D.960种解析:选D 按照车主的要求,从左到右第一个号码有5种选法,第二个号码有3种选法,其余三个号码各有4种选法.因此车牌号码的所有可能情况有5×3×4×4×4=960(种).6.如图所示,从点A沿圆或三角形的边运动到点C,则不同的走法有________种.解析:由A直接到C有2种不同的走法,由A经点B到C有2×2=4种不同的走法.因此由分类加法计数原理知,共有2+4=6种不同的走法.答案:67.甲、乙、丙3个班各有3,5,2名三好学生,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种推选方法.解析:分为三类:①甲班选1名,乙班选1名,根据分步乘法计数原理,有3×5=15(种)选法;②甲班选1名,丙班选1名,根据分步乘法计数原理,有3×2=6(种)选法;③乙班选1名,丙班选1名,根据分步乘法计数原理,有5×2=10(种)选法.综上,根据分类加法计数原理,共有15+6+10=31(种)推选方法.答案:318.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.解析:分三类:若甲在周一,则乙、丙有4×3=12种排法;若甲在周二,则乙、丙有3×2=6种排法;若甲在周三,则乙、丙有2×1=2种排法.所以不同的安排方法共有12+6+2=20种.答案:209.3个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?解:法一:(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择.根据分步乘法计数原理得:共有方法数N=5×4×3=60.法二:(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3×2×1=6(种);第二类:空盒子标号为(1,3):选法有3×2×1=6(种);第三类:空盒子标号为(1,4):选法有3×2×1=6(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法.根据分类加法计数原理得,共有方法数N=6+6+…+6=60.10.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①从高一和高二各选1人作为中心发言人,有50×42=2 100种选法;②从高二和高三各选1人作为中心发言人,有42×30=1 260种选法;③从高一和高三各选1人作为中心发言人,有50×30=1 500种选法.综上,共有2 100+1 260+1 500=4 860种选法.1.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有( )A.512个 B.192个C.240个 D.108个解析:选D 能被5整除的四位数,可分为两类:一类是末位为0,由分步乘法计数原理,共有5×4×3=60个.另一类是末位为5,由分步乘法计数原理,共有4×4×3=48个.由分类加法计数原理得所求的四位数共有60+48=108个.2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有( )A.24种 B.18种C.12种 D.6种解析:选B 法一:(直接法)若黄瓜种在第一块土地上,则有3×2=6种不同的种植方法.同理,黄瓜种在第二块、第三块土地上均有3×2=6种不同的种植方法.故不同的种植方法共有6×3=18种.法二:(间接法)从4种蔬菜中选出3种种在三块地上,有4×3×2=24种方法,其中不种黄瓜有3×2×1=6种方法,故共有不同的种植方法24-6=18种.3.从集合{1,2,3,…,11}中任选2个元素作为椭圆方程+=1中的m和n,则落在矩形区域B={(x,y)||x|<11且|y|<9}内的椭圆个数为________.解析:根据题意,知当m=1时,n可等于2,3,…,8,共对应7个不同的椭圆;当m=2时,n可以等于1,3,…,8,共对应7个不同的椭圆.同理可得,当m=3,4,5,6,7,8时,各分别对应7个不同的椭圆;当m=9时,n可以等于1,2,…,8,共对应8个不同的椭圆;当m=10时,共对应8个不同的椭圆.综上所述,对应的椭圆共有7×8+8×2=72(个).答案:724.如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数是多少?解:分8类,当中间数为2时,百位只能选1,个位可选1,0,由分步乘法计数原理,凸数的个数为1×2=2;当中间数为3时,百位可选1,2,个位可选0,1,2,由分步乘法计数原理,凸数的个数为2×3=6;同理可得:当中间数为4时,凸数的个数为3×4=12;当中间数为5时,凸数的个数为4×5=20;当中间数为6时,凸数的个数为5×6=30;当中间数为7时,凸数的个数为6×7=42;当中间数为8时,凸数的个数为7×8=56;当中间数为9时,凸数的个数为8×9=72.故所有凸数的个数为2+6+12+20+30+42+56+72=240.5.用1,2,3,4四个数字可重复的排成三位数,并把这些三位数由小到大排成一个数列{an}.(1)写出这个数列的前11项;(2)若an=341,求项数n.解:(1)111,112,113,114,121,122,123,124,131,132,133.(2)比an=341小的数有两类:①首位是1或2:1×× 2××②首位是3:31×32×33×故共有:2×4×4+1×3×4=44(项).因此an=341是该数列的第45项,即n=45.4。












