
河北省唐山市高三9月模拟考试数学文试题及答案.doc
9页河北省唐山市20xx届高三摸底考试数学(文)试题说明:1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为非选择题,分为必考和选考两个部分.2.答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题.3.做选择题时,每小题选出答案后,用铅笔把答题卡上对应的项目符号涂黑,如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.4.考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求)1、已知集合M={x|x≥-1},N={x|2-x2≥0},则M∪N=( ) A.[-,+∞) B.[-1,] C.[-1,+∞) D.(-∞,-]∪[-1,+∞)2、复数z=,则( ) A.|z|=2 B.z的实部为1 C.z的虚部为-i D.z的共轭复数为-1+i3、函数f王(x)=是( ) A.偶函数,在(0,+∞)是增函数 B.奇函数,在(0,+∞)是增函数 C.偶函数,在(0,+∞)是减函数 D.奇函数,在(0,+∞)是减函数4、抛物线y=2x2的准线方程是( )A.x=- B.x= C.y=- D.y=5、已知,则sin2x的值为( ) A. B. C. D.6、甲、乙、丙三人站成一排,则甲、乙相邻的概率是( ) A. B. C. D.7、执行如图所示的程序框图,则输出的a=( ) A. B. C.5 D.7、设向量a,b满足|a|=|b|=|a+b|=1,则|a-tb|(t∈R)的最小值为( ) A.2 B. C.1 D.9、将函数的图象关于x=对称,则ω的值可能是( ) A. B. C.5 D.210、某几何体的三视图如图所示,则该几何体的表面积为( ) A. B.+6 C.+5 D.+511、已知a>0,x,y满足约束条件,且z=2x+y的最小值为1,则a=( ) A. B. C.1 D.212、已知a>0,且a≠1,则函数f(x)=ax+(x-1)2-2a的零点个数为( ) A.1 B.2 C.3 D.与a有关第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13、函数f(x)=log2(2x-1)的定义域为________________.14、实数x,y满足x+2y=2,则3x+9y的最小值是________________.15、已知双曲线C:(a>0,b>0)的一条渐近线与直线l:垂直,C的一个焦点到l的距离为1,则C的方程为__________________.16、在△ABC中,,点D在边BC上,,,,则AC+BC=_________________.三、解答题:本大题共70分,其中(17)-(21)题为必考题,(22),(23),(24)题为选考题,解答应写出文字说明、证明过程或演算步骤.17(本小题满分12分)已知等差数列{an}的前n项和为Sn,Sn=kn(n+1)-n(k∈R),公差d为2.(1)求an与k;(2)若数列{bn}满足,(n≥2),求bn. 18(本小题满分12分)某公司对夏季室外工作人员规定如下:当气温超过35℃时,室外连续工作时间严禁超过100分钟;不少于60分钟的,公司给予适当补助.随机抽取部分工人调查其高温室外连续工作时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中工作时间范围是[0,100],样本数据分组为[0,20),[20,40),[40.60),[60,80),[80,100].(1)求频率分布直方图中x的值;(2)根据频率分布直方图估计样本学数据的中位数;(3)用这个样本的频率分布估计总体分布,将频率视为概率;用分层抽样的方法从享受补助人员和不享受补助人员中抽取25人的样本,检测他们健康状况的变化,那么这两种人员应该各抽取多少人?19(本小题满分12分)如图,在直三棱柱ABC-A1B1C1中,点D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若AB=AC,BC=AA1=2,求点A1到平面ADC1的距离.20(本小题满分12分)已知函数f(x)=2ex-ax-2(a∈R)(1)讨论函数的单调性;(2)当x≥0时,f(x)≥0,求a的取值范围.21(本小题满分12分)椭圆C:(a>b>0)的离心率为,P(m,0)为C的长轴上的一个动点,过P点斜率为的直线l交C于A、B两点.当m=0时,(1)求C的方程;(2)求证:为定值.请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑22(本小题满分10分)选修4-1:几何证明选讲如图,⊙O过平行四边形ABCT的三个顶点B,C,T,且与AT相切,交AB的延长线于点D.(1)求证:AT2=BT·AD;(2)E、F是BC的三等分点,且DE=DF,求∠A.23(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:(a>0),过点P(-2,-4)的直线l的参数方程为(t为参数),l与C分别交于M,N.(1)写出C的平面直角坐标系方程和l的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a的值.24(本小题满分10分)选修4-5:不等式选讲设函数(m>0)(1)证明:f(x)≥4;(2)若f(2)>5,求m的取值范围.唐山市20xx—20xx学年度高三年级摸底考试文科数学参考答案一、 选择题:A卷:CDBCA BCDCD BAB卷:ADBCC ACDDC BB二、填空题:(13)(,+∞) (14)6 (15)x2-=1 (16)3+ 三、解答题:(17)(本小题满分12分)解:(Ⅰ)由题设得a1=S1=2k-1,a2=S2-S1=4k-1,由a2-a1=2得k=1,则a1=1,an=a1+(n-1)d=2n-1. …4分(Ⅱ)bn=bn-1+2=bn-2+2+2=b1+2+2+…+2+2.由(Ⅰ)知2=22n-1,又因为b1=2,所以bn=21+23+25+…+22n-3+22n-1==.明显,n=1时,也成立.综上所述,bn=. …12分(18)(本小题满分12分)解:(Ⅰ)由直方图可得:20×(x+0.0250+0.0065+0.0030+0.0030)=1,解得x=0.0125. …4分(Ⅱ)设中位数为t,则20×0.0125+(t-20)×0.0250=0.5,得t=30.样本数据的中位数估计为30分钟. …8分(Ⅲ)享受补助人员占总体的12%,享受补助人员占总体的88%.因为共抽取25人,所以应抽取享受补助人员25×12%=3人,抽取不享受补助人员25×88%=22人. …12分A1B1C1ABCDEF(19)(本小题满分12分)解:(Ⅰ)连接A1C,交AC1于点E,则点E是A1C及AC1的中点.连接DE,则DE∥A1B.因为DEÌ平面ADC1,所以A1B∥平面ADC1.…4分(Ⅱ)由(Ⅰ)知A1B∥平面ADC1,则点A1与B到与平面ADC1的距离相等,又点D是BC的中点,点C与B到与平面ADC1的距离相等,则C到与平面ADC1的距离即为所求. …6分因为AB=AC,点D是BC的中点,所以AD⊥BC,又AD⊥A1A,所以AD⊥平面BCC1B1,平面ADC1⊥平面BCC1B1.作于CF⊥DC1于F,则CF⊥平面ADC1,CF即为所求距离. …10分在Rt△DCC1中,CF==.所以A1到与平面ADC1的距离为. …12分(20)(本小题满分12分)解:(Ⅰ)f¢(x)=2ex-a.若a≤0,则f¢(x)>0,f(x)在(-∞,+∞)上单调递增;若a>0,则当x∈(-∞,ln)时,f¢(x)<0,f(x)单调递减;当x∈(ln,+∞)时,f¢(x)>0,f(x)单调递增. …5分(Ⅱ)注意到f(0)=0.若a≤0,则当x∈[0,+∞)时,f(x)单调递增,f(x)≥f(0)=0,符合题意.若ln≤0,即0<a≤2,则当x∈[0,+∞)时,f(x)单调递增,f(x)≥f(0)=0,符合题意.若ln>0,即a>2,则当x∈(0,ln)时,f(x)单调递减,f(x)<0,不合题意.综上所述,a的取值范围是(-∞,2]. …12分(21)(本小题满分12分)解:(Ⅰ)因为离心率为,所以=.当m=0时,l的方程为y=x,代入并整理得x2=. …2分设A(x0,y0),则B(-x0,-y0),·=-x-y=-x=-·.又因为·=-,所以a2=25,b2=16,椭圆C的方程为. …5分(Ⅱ)l的方程为x=y+m,代入并整理得25y2+20my+8(m2-25)=0.设A(x1,y1),B(x2,y2),则|PA|2=(x1-m)2+y=y,同理|PB|2=y. …8分则|PA|2+|PB|2=( y+y)=[(y1+y2)2-2y1y2]=[(-)2-]=41.所以,|PA|2+|PB|2是定值. …12分(22)(本小题满分10分)选修4-1:几何证明选讲解:(Ⅰ)证明:因为∠A=∠TCB,∠ATB=∠TCB,所以∠A=∠ATB,所以AB=BT.又AT 2=AB×AD,所以AT 2=BT×AD. …4分(Ⅱ)取BC中点M,连接DM,TM.由(Ⅰ)知TC=TB,所以TM⊥BC.因为DE=DF,M为EF的中点,所以DM⊥BC.所以O,D,T三点共线,DT为⊙O的直径.所以∠ABT=∠DBT=90°.所以∠A=∠ATB=45°. …10分(23)(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)曲线C的直角坐标方程为y2=2ax(a>0);直线l的普通方程为x-y-2=0. …4分(Ⅱ)将直线l的参数方程与C的直角坐标方程联立,得t2-2(4+a)t+8(4+a)=0 (*)△=8a(4+a)>0.设点M,N分别对应参数t1,t2,恰为上述方程的根.则|PM|=|t1|,|PN|=|t2|,|MN|=|t1-t2|.由题设得(t1-t2)2=|t1t2|,即(t1+t2)2-4t1t2=|t1t2|.[由(*)得t1+t2=2(4+a),t1t2=8(4+a)>0。