好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

华师版初中数学知识内容概况.doc

9页
  • 卖家[上传人]:世***
  • 文档编号:153026244
  • 上传时间:2020-11-26
  • 文档格式:DOC
  • 文档大小:54KB
  • / 9 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 华师版初中数学知识内容概况 公理和定理 一、线与角 1、两点之间,线段最短. 2、经过两点有一条直线,并且只有一条直线 3、对顶角相等 4、经过直线外或直线上一点,有且只有一条直线与已知直线垂直 5、(1)经过已知直线外一点,有且只有一条直线与已知直线平行 (2)如果两条直线都和第三条直线平行,那么这两条直线也平行. 6、平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行. 7、平行线的特征: (1)两直线平行,同位角相等 (2)两直线平行,内错角相等 (3)两直线平行,同旁内角互补 8、角平分线的性质:角平分线上的点到这个角的两边的距离相等. 角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 9、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 二、三角形、多边形 10、三角形中的有关公理、定理: (1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360. (2)三角形内角和定理:三角形的内角和等于180. (3)三角形的任何两边的和大于第三边,任何两边之差小于第三边。

      (4)三角形中位线定理: 三角形的中位线平行于第三边,并且等于第三边的一半. 11、多边形中的有关公理、定理: (1)多边形的内角和定理:n边形的内角和等于( n-2)180. (2)多边形的外角和定理:任意多边形的外角和都为360. (3)欧拉公式:顶点数 + 面数-棱数=2. 12、如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. 13、等腰三角形中的有关公理、定理: (1)等腰三角形的两个底角相等.(简写成“等边对等角”) (2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成“等角对等边”) (3)等腰三角形的“三线合一”定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”. (4)等边三角形的各个内角都相等,并且每一个内角都等于60. 14、直角三角形的有关公理、定理: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半. 三、特殊四边形 15、平行四边形的性质: (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分. 16、平行四边形的判定: (1)两组对边分别平行的四边形是平行四边形; (2)一组对边平行且相等的四边形是平行四边形; (3)两组对边分别相等的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形; (5)对角线互相平分的四边形是平行四边形. 17、平行线之间的距离处处相等. 18、矩形的性质: (1)矩形的四个角都是直角; (2)矩形的对角线相等且互相平分. 19、矩形的判定:有三个角是直角的四边形是矩形. 20、菱形的性质: (1)菱形的四条边都相等; (2)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角. 21、菱形的判定:四条边相等的四边形是菱形. 22、正方形的性质: (1)正方形的四个角都是直角; (2)正方形的四条边都相等; (3)正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角. 23、正方形的判定: (1)有一个角是直角的菱形是正方形; (2)有一组邻边相等的矩形是正方形. 24、等腰梯形的判定: (1)同一条底边上的两个内角相等的梯形是等腰梯形; (2)两条对角线相等的梯形是等腰梯形. 25、等腰梯形的性质: (1)等腰梯形的同一条底边上的两个内角相等; (2)等腰梯形的两条对角线相等. 26、梯形的中位线平行于梯形的两底边,并且等于两底和的一半. 四、相似形与全等形 27、相似多边形的性质: (1)相似多边形的对应边成比例; (2)相似多边形的对应角相等; (3)相似多边形的面积比等于相似比的平方. 28、相似三角形的判定: (1)如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似; (2)如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似; (3)如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似. 29、全等多边形的对应边、对应角分别相等. 30、全等三角形的判定: (1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等(S.S.S.).(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.(S.A.S.) (3)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等(A.S.A.). (4)有两个角及其中一个角的对边分别对应相等的两个三角形全等(A.A.S.) (5)如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等.(H.L.) 五、圆 31、(1)半圆或直径所对的圆周角都相等,都等于90(直角);(2)90的圆周角所对的弦是圆的直径. 32、在同一圆内,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等. 33、不在同一条直线上的三个点确定一个圆. 34、经过半径的外端且垂直于这条半径的直线是圆的切线. 35、从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角. 公式和法则 一、数的有关概念和运算 1、正数都大于零,负数都小于零,正数大于负数. 2、零的相反数是零 3、一个正数的绝对值是它本身;零的绝对值是零; 一个负数的绝对值是它的相反数. 4、两个负数,绝对值大的反而小. 5、有理数的运算: (1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数. (2)有理数减法法则:减去一个数,等于加上这个数的相反数. (3)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对植相乘.任何数同零相乘,都得零. 不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正. 几个数相乘,有一个因数为零,积就为零. (4)有理数除法则:除以一个数等于乘上这个数的倒数. (注意:0不能作除数.) 有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除. 零除以任何一个不等于零的数,都得零. (5)有理数乘方法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. (6)有理数混合运算的运算顺序规定如下:① 先算乘方,再算乘除,最后算加减;②同级运算,按照从左至右的顺序进行;③如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的. 6、(1)加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:abc=a(bc);乘法分配律:a(b+c)=ab+ac. (2)幂的运算:aman=am+n(m、n为正整数);(m、n为正整数);(n为正整数);(m、n为正整数,m>n,a≠0),a0=1(a≠0);(a≠0,n为正整数). (3)乘法公式:平方差公式:;完全平方公式:= 二、式的有关概念和运算 1、合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变. 2、去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号. 3、添括号法则:所添括号前面是“+”号,括到括号里的各项都不变符号;所添括号前面是“-”号,括到括号里的各项都改变符号. 4、整式加减的一般步骤可以总结为: (1) 如果有括号,那么先去括号;(2) 如果有同类项,再合并同类项. 5、二次根式的运算:;() 三、方程 用方程(组)解决实际问题的过程:问题方程(组)解答 一元二次方程的求根公式:() 四、不等式的性质 1、 如果a>b,那么a+c>b+c,a-c>b-c; 2、如果a>b,且c>0,那么ac>bc;如果a>b,且c<0,那么ac

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.