
加热冷却功率计算.doc
14页模温机的加热功率和计算方法模温机的加热功率和计算方法点击次数:183 发布时间:2011-10-13模温机选型的计算方法模温机选型的计算方法 1.特殊的情况需进行计算: A、求加热器功率或冷冻功率 KW=W×△t×C×S/860×T W=模具重量或冷却水 KG △t=所需温度和起始温度之间的温差 C= 比热 油(0.5),钢(0.11),水(1),塑料(0.45~0.55) T=加温至所需温度的时间(小时) B、求泵的大小 需了解客户所需泵浦流量和压力(扬程) P(压力 Kg/cm2)=0.1×H(扬程 M)×α(传热媒体比重,水=1,油=0.7-0.9) L(媒体所需流量 L/min)=Q(模具所需热量 Kcal/H)/C(媒体比热水=1 油=0.45)×△t(循环媒体进出模具的温差)×α×60 2.冷冻机容量选择 A、Q(冷冻量 Kcal/H)=Q1+Q2 Q1(原料带入模具的热量 Kcal/H)=W(每小时射入模具中原料的重量 KG)×C×(T1-T2)×S(安全系数 1.5~2) T1 原料在料管中的温度;T2 成品取出模具时的温度 Q2 热浇道所产生的热量 Kcal/H B、速算法(有热浇道不适用) 1RT=7~8 OZ 1OZ=28.3g(含安全系数) 1RT=3024Kcal/H=12000BTU/H=3.751KW 1KW=860 Kcal/H 1 Kcal=3.97BTU 3、冷却水塔选用=A+B A、射出成型机用 冷却水塔 RT=射出机马力(HP)×0.75KW×860Kcal×0.4÷3024 B、冷冻机用 冷却水塔 RT=冷冻机冷吨(HP)×1.25 选择模具温度控制器时,以下各点是主要的考虑因素; 1.泵的大小和能力。
2.内部喉管的尺寸 3.加热能力 4.冷却能力 5.控制形式 A、泵的大小 从已知的每周期所需散热量我们可以很容易计算冷却液需要容积流速,其后再得出所需的正确冷却能力,模温控制器的制造商大都提供计算最低的泵流速公式表 4.1 在选择泵时是很有用,它准确地列出了不同塑料的散热能力 以下决定泵所需要提供最低流速的经验法则: 若模腔表面各处的温差是 5℃时, 0.75gal/min/kW @5℃温差或是 3.4151/min/kW @5℃温差 若模腔表面各处的温差是 1℃,则所需的最低流速需要按比例乘大五倍即是3.75gal/min/kW 或是 17.031/min/kW为了获得产品质量的稳定性,很多注塑公司都应该把模腔表面的温差控制在 1-2℃, 可 是 实 际 上其中很多的注塑厂商可能并不知道这温差的重要性或是认为温差的最佳范围是 5-8℃ 计算冷却液所需的容积流速,应使用以下的程序: 1.先计算栽一塑料/模具组合的所城要排走的热量:若 以前述的 PC 杯模为例,则实际需要散去的热量是: 一模件毛重(g)/冷却时间(s)=208/12=17.333g/s PC 的散热率是=368J/g 或是 368kJ/kg 所以每周期需要散去的热量=368×17.33/1,000=6.377kW 2.再计算冷却所需的容积流速: 按照上述的经验法则若模腔表面的温差是 5℃时,流速=6.377×0.75=4.78gal/min 或是=6.377×3.41=21.751/min 若模腔表现的温差是 1℃则流速=4.78×5=23.9gal/min 或是=21.75×5=108.731/min 3.泵流速的规定 为了得到良好的散热效果,泵的流速能力应较计算的结果最少大 10%,所以需使用27gal/min 或是 120/min 的泵。
4.泵压力的规定; 一般模温控制器的操作压力在 2-5bar(29-72.5psi),由于在压力不足的情况下会影响冷却液的容积流速(流动的阻力产生压力损失),所以泵的压力愈高,流速愈稳定 对于冷却管道很细小的模具(例如管道直径是 6mm/0. 236in),泵的压力便需要有10bar(145psi)才可提供足够的散热速度(即是冷却液速度) 大体上冷却液的容积液速要求愈高,管道的直径愈少则所需要的泵输出压力愈大所以在一般应用模温控制器的压力应超过了 3bar(43.5psi). B、加热能力 图 4.8 是典型的加热计算表,提供了就模具重所需要的加热量图 4.8 的计算用法下:1.纵轴代表着模具的重量 2.横轴代表着模具升温至所需温度的热量,单位是 kW/hr 3. 37℃-121℃的各温度斜线提供了模具重量和模温控制器的发热能力在相应温度下的关系 例如我们可以从图查知: 1.把 重 量 500kg 的 模 具 升 温 至 50℃ 所 需的加热能力是 3.3kW/hr 2.把重 700kg 的模具升温至 65℃所需的别热能力是 6.5kW/hr 总的来说,加热能力愈强,则所需的升温时间,便相应地减少了(加热能力双倍,升温时间减少)。
图 4.8 提供了注塑厂商一个很有用的资料,可以马上找出任何模具的加热要求,从而获得正确模温控制器的发热能力往往就是因为模温控制器的能力太低,引致模具不能达到最佳的温度状态欲想知道模温控制器实际表现,我们可以比较它的实际的和计算的模具升温时间 冷冻能力 模温控制器的冷冻线路的设计和组成零件对模温的精确控制致为重要当模具或加温液的温度上升至设定值时,模温控制器必须能快速地及有效地避免温度继续上升,办法是引进另一较低温度的液体,其引进的控制由电磁阀负责所以温度超驰的消除和稳定性取决于电磁阀的大小 冷却电磁阀的孔径可用以下的公式计算: 冷冻能力(gal/min)=kW×3.16/△t 这里△t=模温 控 制 器所设定的生产温度和冷冻水温度之差: kW=模具需要排走的热量 以下表列出了不同电磁阀孔径所能提供的容积流速: 电磁阀孔径 容积流速 in mm gal/min 1/min 0.25 6.35 0.7 3.18 0.375 9.53 1.2 5.45 0.500 12.70 3.3 14.98 0.750 19.65 5.4 24.52 1.000 25.40 10.0 45.40 1.250 31.75 13.0 59.02 1.500 38.10 20.0 90.80 计算了冷冻能力后便可从以上表找出相应的电磁阀,如以下的例子: PC 杯模需要排走的热量是 6.377kW 生产的设定温度是 90℃ 冷冻水的温度是 18℃ △T=90-18=72℃ 所以冷冻能力=6.377×316/72=0.28gal/min 或 1.271/min 从上表可知道孔径为 6.35mm/0.250in 的电磁阀可提供足够的容积流速,适 宜 使 用于 模 温 控制范围是±1℃的精确要求。
电磁阀阀门的压力降影响着流速上表的流速数值是基于 1bar(14.5psi)的压力降所 以 压力降愈高,冷冻水的流速愈快电磁阀的典型的压力降是 2bar(29psi) C、液体式模温加热控制系统 任何一台模温控制器的主要目的是把模具温度控制在(±2°F)的范围内所以对于运行在模具管路间的液体的升温控制必须精确,否则模具温度控制的目的便不能达到了 某些模温控制器的控制方法祗属于开/关形式,其工作原理是比较实际和设定的温度倘若实际的温度比较设定的温度低很多,电热便全开,待实际温度达到设定值时,电热便被关上,由于开/关形式 的 控 制 产 生 了很大的实际正负温度偏差这温度变化不单祗直接地影响着液体的温度,还间接地带给了模具很大的过度升降,不消说最后定必反映在成品的质量上 所以我们应该使用 PID(比例、积分、微分)形式的加热控制系统,它可以保证模具的温度控制维持在±1℃(±2°F)的范围内1、通过冷却水(油)进、出口温差来计算发热量Q = SH * De * F * DT / 60Q: 发热量 KWSH:比热 水的比热为 4.2KJ/Kg*C (4.2 千焦耳/千克*摄氏度) 油的比热为 1.97KJ/Kg*C (1.97 千焦耳/千克*摄氏度)De: 比重 水的比重 1Kg/L (1 千克/升) 油的比重 0.88Kg/L (0.88 千克/升)F: 流量 LPM (L/min 升/分钟)DT: 冷却水(油)进出口温差(出口温度-进口温度) 注: “/ 60“ 是用于将流量 升/分 变为 升/秒 ;1kW = 1kJ/s ;例 1: 冷却水进水为 20 度,出水 25 度,流量 10 升/分钟 发热量 Q = 4.2 * 1 * 10 * (25-20) / 60 = 3.5KW选择冷水机冷量时可适当加大 20%-50% 例 2: 冷却油进口为 25 度,出水 32 度,流量 8 升/分钟发热量 Q = 1.97 * 0.88 * 8 * (32-25) / 60 = 1.62KW选择冷水机冷量时可适当加大 20%-50% 2、通过设备的功率、发热量估算a、如用于主轴冷却,可根据主轴电机功率的 30%估算所需制 冷机组的冷量。
例: 7.5KW 电机,可选配 2.2kw 或 2.8kw 冷量的制冷机组;b、注塑机可按 每安时 0.6KW 冷量估算3、通过水(油)箱的温升来计算发热量Q = SH * De * V * DT / 60Q: 发热量 KWSH:比热 水的比热为 4.2KJ/Kg*C (4.2 千焦耳/千克*摄氏度) 油的比热为 1.97KJ/Kg*C (1.97 千焦耳/千克*摄氏度)De: 比重 水的比重 1Kg/L (1 千克/升) 油的比重 0.88Kg/L (0.88 千克/升)V: 水容量 L(升)包括水箱及管路中的总水容量DT: 水(油)在一分钟内的最大温升注: “/ 60“ 是用于将温升 摄氏度/分 变为 摄氏度/秒 ; 1kW = 1kJ/s; 注意: 测量时,水(油)箱的温度需略低于环境温度;并且 设备处于最大的负荷下工作例: 水箱容积 1000L 最大的水温 0.2 度/分钟发热量 Q = 4.2 * 1 * 1000 * 0.2 / 60 = 14KW选择冷水机冷量时可适当加大 20%-50% 补充说明:补充说明:1 1、冷水机的制冷量与环境温度及出水温度不同面变化;、冷水机的制冷量与环境温度及出水温度不同面变化;2 2、设备实际发热量亦会因为不同的工件、模具、参数等发生、设备实际发热量亦会因为不同的工件、模具、参数等发生 变化;变化;3 3、使用冷水机后温度下降,连接管路、水箱、油箱、模具、、使用冷水机后温度下降,连接管路、水箱、油箱、模具、 主轴、设备表面温度会低于环境温度,因此会吸收热量导致主轴、设备表面温度会低于环境温度,因此会吸收热量导致 负荷增大;负荷增大;4 4、在工业冷却的实际应用中很多情况是无法准确利用以上方、在工业冷却的实际应用中很多情况是无法准确利用以上方 法计算的,这时只能通过经验数据、同类设备类比等方法估法计算的,这时只能通过经验数据、同类设备类比等方法估 算。
算5、任何的、任何的计计算方法都有可能会出算方法都有可能会出现现偏差,以致偏差,以致实际选实际选用的制冷机用的制冷机组过组过大或大或过过少,所以上面的少,所以上面的 方法方法仅仅作参考作参考电加热器功率计算电加热器功率计算一、一般按以下三步进行电加热器的设计计算:1.计算维持介质温度不变的前提下,实际所需要的维持温度的功率2.计算从初始温度在规定的时间内加热至设定温度的所需要的功率3.根据以上两种计算结果,选择加热器的型号和数量总功率取以上二种功率的最大值并考虑 1.2 系数公式:1.维持介质温度抽需要的功率KW=C2M3△T/864+P式中:M3 每小时所增加的介质 kg/h2.初始加热所需要的功率KW = ( C1M1△T + C2M2△T )÷ 864/P + P/2式中:C1C2 分别为容器和介质的比热(Kcal/Kg℃)M1M2 分别为容器和介质的质量(Kg)△T 为所需温度和初始温度之差(℃)H 为初始温度加热到设定温度所需要的时间(h)P 最终温度下容器。
