
2024届山东、湖北省部分重点中学高三3月月考数学试题理试卷.doc
20页2024届山东、湖北省部分重点中学高三3月月考数学试题理试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上用2B铅笔将试卷类型(B)填涂在答题卡相应位置上将条形码粘贴在答题卡右上角"条形码粘贴处"2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案答案不能答在试题卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液不按以上要求作答无效4.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.已知是定义在上的奇函数,且当时,.若,则的解集是( )A. B.C. D.2.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是( )A. B. C. D.13.已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A.29 B.30 C.31 D.324.已知函数(),若函数有三个零点,则的取值范围是( )A. B.C. D.5.为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:①越小,则国民分配越公平;②设劳伦茨曲线对应的函数为,则对,均有;③若某国家某年的劳伦茨曲线近似为,则;④若某国家某年的劳伦茨曲线近似为,则.其中正确的是:A.①④ B.②③ C.①③④ D.①②④6.已知椭圆(a>b>0)与双曲线(a>0,b>0)的焦点相同,则双曲线渐近线方程为( )A. B.C. D.7.设函数,则使得成立的的取值范围是( ).A. B.C. D.8.已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )A. B. C. D.9.已知,则下列说法中正确的是( )A.是假命题 B.是真命题C.是真命题 D.是假命题10.函数的图象可能为( )A. B.C. D.11.设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )A. B. C.5 D.612.已知,,,若,则正数可以为( )A.4 B.23 C.8 D.17二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量,,若向量与向量平行,则实数___________.14.已知数列的各项均为正数,记为数列的前项和,若,,则______.15. “今有女善织,日益功疾,初日织五尺,今一月共织九匹三丈.”其白话意译为:“现有一善织布的女子,从第2天开始,每天比前一天多织相同数量的布,第一天织了5尺布,现在一个月(按30天计算)共织布390尺.”则每天增加的数量为____尺,设该女子一个月中第n天所织布的尺数为,则______.16.若变量,满足约束条件则的最大值是______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知函数.(1)当时,求不等式的解集;(2)若对任意成立,求实数的取值范围.18.(12分)已知,,不等式恒成立.(1)求证:(2)求证:.19.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)若,,且数列前项和为,求的取值范围.20.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.21.(12分)在三棱锥中,为棱的中点,(I)证明:;(II)求直线与平面所成角的正弦值.22.(10分)已知等差数列的前n项和为,且,.求数列的通项公式;求数列的前n项和.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1.B【解题分析】利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【题目详解】为定义在上的奇函数,.当时,,,为奇函数,,由得:或;综上所述:若,则的解集为.故选:.【题目点拨】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.2.B【解题分析】先根据导数的几何意义写出 在 两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数 ,结合导数求出最小值,即可选出正确答案.【题目详解】解:当 时,,则;当时,则.设 为函数图像上的两点,当 或时,,不符合题意,故.则在 处的切线方程为;在 处的切线方程为.由两切线重合可知 ,整理得.不妨设则 ,由 可得则当时, 的最大值为.则在 上单调递减,则.故选:B.【题目点拨】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出 和 的函数关系式.本题的易错点是计算.3.B【解题分析】设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求.【题目详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5===1.故选C.【题目点拨】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运算能力,属于中档题.4.A【解题分析】分段求解函数零点,数形结合,分类讨论即可求得结果.【题目详解】作出和,的图像如下所示:函数有三个零点,等价于与有三个交点,又因为,且由图可知,当时与有两个交点,故只需当时,与有一个交点即可.若当时,时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|有一个交点𝐵,故满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|没有交点,故不满足题意;时,显然𝑦=𝑓(𝑥)与𝑦=4|𝑥|也没有交点,故不满足题意;时,显然与有一个交点,故满足题意.综上所述,要满足题意,只需.故选:A.【题目点拨】本题考查由函数零点的个数求参数范围,属中档题.5.A【解题分析】对于①,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以①正确.对于②,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以②错误.对于③,因为,所以,所以③错误.对于④,因为,所以,所以④正确.故选A.6.A【解题分析】由题意可得,即,代入双曲线的渐近线方程可得答案.【题目详解】依题意椭圆与双曲线即的焦点相同,可得:,即,∴,可得,双曲线的渐近线方程为:,故选:A.【题目点拨】本题考查椭圆和双曲线的方程和性质,考查渐近线方程的求法,考查方程思想和运算能力,属于基础题.7.B【解题分析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【题目详解】由题意知:定义域为,,为偶函数,当时,,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【题目点拨】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.8.B【解题分析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得①.令,解得,,所以切线方程为,化简得②.由①②对比系数得,化简得③.构造函数,,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的面积是.故选:B【题目点拨】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.9.D【解题分析】举例判断命题p与q的真假,再由复合命题的真假判断得答案.【题目详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D【题目点拨】本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.10.C【解题分析】先根据是奇函数,排除A,B,再取特殊值验证求解.【题目详解】因为,所以是奇函数,故排除A,B,又,故选:C【题目点拨】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.11.A【解题分析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【题目详解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【题目点拨】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.12.C【解题分析】首先根据对数函数的性质求出的取值范围,再代入验证即可;【题目详解】解:∵,∴当时,满足,∴实数可以为8.故选:C【题目点拨】本题考查对数函数的性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
13.【解题分析】由题可得,因为向量与向量平行,所以,解得.14.63【解题分析】对进行化简,可得,再根据等比数列前项和公式进行求解即可【题目详解】由数列为首项为,公比的等比数列,所以63【题目点拨】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,约分但解题本质还是围绕等差和等比的基本性质15. 52 【解题分析】设从第2天开始,每天比前一天多织尺布,由等差数列前项和公式求出,由此利用等差数列通项公式能求出.【题目详解】设从第2天开始,每天比前一天多织d尺布,则,解得,即每天增加的数量为,,故答案为,52.【题目点拨】。












