
安徽省临泉县复读学校2025学年高一数学第一学期期末考试试题含解析.doc
15页安徽省临泉县复读学校2025学年高一数学第一学期期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效一、选择题:本大题共10小题,每小题5分,共50分在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.22.下列说法不正确的是A.方程有实根函数有零点B.有两个不同的实根C.函数在上满足,则在内有零点D.单调函数若有零点,至多有一个3.已知角α的终边过点P(4,-3),则sinα+cosα的值是( )A. B.C. D.4.已知点P(3,4) 在角的终边上,则的值为()A B.C. D.5.已知向量,,则下列结论正确的是()A.// B.C. D.6.主视图为矩形的几何体是( )A. B.C. D.7.下列函数中,既是偶函数,又在区间上是增函数的是()A. B.C. D.8.为了得到函数的图象,可以将函数的图象( )A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度9.直线的倾斜角为A.30° B.60°C.120° D.150°10.集合的真子集的个数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。
11.已知平面向量,的夹角为,,则 =______12.设x,.若,且,则的最大值为___13.已知函数,若,则___________;若存在,满足,则的取值范围是___________.14.若,且,则的值为__________15.已知函数,若,则________.16.在△ABC中,,面积为12,则=______三、解答题:本大题共5小题,共70分解答时应写出文字说明、证明过程或演算步骤17.已知.(1)若,且,求的值.(2)若,且,求的值.18.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.19.已知幂函数在上单调递增,函数(1)求实数m的值;(2)当时,记的值域分别为集合,若,求实数k的取值范围20.如图,在△ABC中,A(5,–2),B(7,4),且AC边的中点M在y轴上,BC的中点N在x轴上(1)求点C的坐标;(2)求△ABC的面积21.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?参考答案一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.2、C【解析】A选项,根据函数零点定义进行判断;B选项,由根的判别式进行求解;C选项,由零点存在性定理及举出反例进行说明;D选项,由函数单调性定义及零点存在性定理进行判断.【详解】A.根据函数零点的定义可知:方程有实根⇔函数有零点,∴A正确B.方程对应判别式,∴有两个不同实根,∴B正确C.根据根的存在性定理可知,函数必须是连续函数,否则不一定成立,比如函数,满足条件,但在内没有零点,∴C错误D.若函数为单调函数,则根据函数单调性的定义和函数零点的定义可知,函数和x轴至多有一个交点,∴单调函数若有零点,则至多有一个,∴D正确故选:C3、A【解析】由三角函数的定义可求得sinα与cosα,从而可得sinα+cosα的值【详解】∵知角α的终边经过点P(4,-3),∴sinα,cosα,∴sinα+cosα故选:A4、D【解析】利用三角函数的定义即可求出答案.【详解】因为点P(3,4) 在角的终边上,所以,,故选:D【点睛】本题考查了三角函数的定义,三角函数诱导公式,属于基础题.5、B【解析】采用排除法,根据向量平行,垂直以及模的坐标运算,可得结果【详解】因为,所以A不成立;由题意得:,所以,所以B成立;由题意得:,所以,所以C不成立;因为,,所以,所以D不成立.故选:B.【点睛】本题主要考查向量的坐标运算,属基础题.6、A【解析】根据几何体的特征,由主视图的定义,逐项判断,即可得出结果.【详解】A选项,圆柱的主视图为矩形,故A正确;B选项,圆锥的主视图为等腰三角形,故B错;C选项,棱锥的主视图为三角形,故C错;D选项,球的主视图为圆,故D错.故选:A.【点睛】本题主要考查简单几何体的正视图,属于基础题型.7、B【解析】先判断定义域是否关于原点对称,再将代入判断奇偶性,进而根据函数的性质判断单调性即可【详解】对于选项A,定义域为,,故是奇函数,故A不符合条件;对于选项B,定义域为,,故是偶函数,当时,,由指数函数的性质可知,在上是增函数,故B正确;对于选项C,定义域为,,故是偶函数,当时,,由对数函数的性质可知,在上是增函数,则在上是减函数,故C不符合条件;对于选项D,定义域为,,故是奇函数,故D不符合条件,故选:B【点睛】本题考查判断函数的奇偶性和单调性,熟练掌握函数的性质是解题关键8、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.9、A【解析】直线的斜率为,所以倾斜角为30°.故选A.10、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。
11、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.12、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】, ,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:13、 ①. ②.【解析】若,则,然后分、两种情况求出的值即可;画出的图象,若存在,满足,则,其中,然后可得,然后可求出答案.【详解】因为,所以若,则,当时,,解得,满足当时,,解得,不满足所以若,则的图象如下:若存在,满足,则,其中所以因为,所以,,所以故答案为:;14、【解析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα= (不合题意,舍去),∴,故答案为−1.15、【解析】根据题意,将分段函数分类讨论计算可得答案【详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【点睛】本题考查分段函数的计算,属于基础题16、【解析】利用面积公式即可求出sinC.使用二倍角公式求出cos2C【详解】由题意,在中,,,面积为12,则,解得∴故答案为【点睛】本题考查了三角形的面积公式,二倍角公式在解三角形中的应用,其中解答中应用三角形的面积公式和余弦的倍角公式,合理余运算是解答的关键,着重考查了运算与求解能力,属于基础题三、解答题:本大题共5小题,共70分。
解答时应写出文字说明、证明过程或演算步骤17、(1)或; (2).【解析】(1)利用诱导公式结合化简,再解方程结合即可求解;(2)结合(1)中将已知条件化简可得,再由同角三角函数基本关系即可求解.【小问1详解】.所以,因为,则,或.【小问2详解】由(1)知:,所以,即,所以,所以,即,可得或.因为,则,所以.所以,故.18、(1)详见解析;(2)详见解析【解析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【点睛】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解19、(1)(2)【解析】(1)由幂函数定义列出方程,求出m的值,检验函数单调性,舍去不合题意的m的值;(2)在第一问的基础上,由函数单调性得到集合,由并集结果得到,从而得到不等式组,求出k的取值范围.【小问1详解】依题意得:,∴或当时,在上单调递减,与题设矛盾,舍去当时,上单调递增,符合要求,故.【小问2详解】由(1)可知,当时,函数和均单调递增∴集合,又∵,∴,∴,∴,∴实数k的取值范围是.20、(1)(–5,–4) (2)【解析】(1)设点,根据题意写出关于的方程组,得到点坐标;(2)由两点间距离公式求出,再由两点得到直线的方程,利用点到直线的距离公式,求出点到的距离,由三角形面积公式得到答案.【详解】(1)由题意,设点,根据AC边的中点M在y轴上,BC的中点N在x轴上,根据中点公式,可得,解得,所以点的坐标是(2)因为, 得,所以直线的方程为,即,故点到直线的距离,所以的面积【点睛】本题考查中点坐标公式,两点间距离公式,点到直线的距离公式,属于简单题.21、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【点睛】本题考查基本不等式的应用,在运用基本不等式求最值时,充分利用“积定和最小,和。












