高一数学人教版2019必修一上学期同步课堂 二次函数与一元二次方程不等式(知识题型)解析.docx
10页2.3二次函数与一元二次方程、不等式(基础知识+基本题型)知识点一、二次函数概念1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函数 这里需要强调:和一元二次方程类似,二次项系数,而可以为零.2. 二次函数的结构特征:⑴ 等号左边是函数,右边是关于自变量的二次式,的最高次数是2.⑵ 是常数,是二次项系数,是一次项系数,是常数项.3.二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.4.二次函数的性质 ①. 当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值. ②. 当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.5.二次函数解析式的表示方法① 一般式:(,,为常数,);知道三点的坐标用一般式。
② 顶点式:(,,为常数,);知道顶点坐标或对称轴和最值时用顶点式③交点式:(,,是抛物线与轴两交点的横坐标),当函数与x轴有两个交点时,用交点式注意中间的“-”注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.6.二次函数的图象与各项系数之间的关系 ①. 二次项系数二次函数中,作为二次项系数,显然. ⑴ 当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大; ⑵ 当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.② 一次项系数 在二次项系数确定的前提下,决定了抛物线的对称轴. ⑴ 在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵ 在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则 ③ 常数项 ⑴ 当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正; ⑵ 当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为; ⑶ 当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负. 总结起来,决定了抛物线与轴交点的位置. 7.二次函数与一元二次方程:⑴. 二次函数与一元二次方程的关系(二次函数与轴交点情况):一元二次方程是二次函数当函数值时的特殊情况.图象与轴的交点个数:① 当时,图象与轴交于两点,其中的是一元二次方程的两根. ② 当时,图象与轴只有一个交点; ③ 当时,图象与轴没有交点. 当时,图象落在轴的上方,无论为任何实数,都有; 当时,图象落在轴的下方,无论为任何实数,都有. ⑵. 抛物线的图象与轴一定相交,交点坐标为,; ⑶ 二次函数常用解题方法总结:① 求二次函数的图象与轴的交点坐标,需转化为一元二次方程;② 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;③ 根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;④ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标. 知识点二、一元二次不等式及一元二次不等式的解集只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如:.一元二次不等式的一般形式:或.设一元二次方程的两根为且,则不等式的解集为,不等式的解集为知识点三、一元二次不等式与相应函数、方程之间的联系对于一元二次方程的两根为且,设,它的解按照,,可分三种情况,相应地,二次函数的图像与轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式或的解集.二次函数()的图象有两相异实根有两相等实根无实根要点诠释:(1)一元二次方程的两根是相应的不等式的解集的端点的取值,是抛物线与轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分三种情况,得到一元二次不等式与的解集.知识点四、解一元二次不等式的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程,计算判别式: ①时,求出两根,且(注意灵活运用因式分解和配方法);②时,求根;③时,方程无解 (3)根据不等式,写出解集.用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程 考点一:一元二次不等式的解法例1. 解下列一元二次不等式(1); (2); (3)【思路点拨】转化为相应的函数,数形结合解决,或利用符号法则解答.【解析】(1)方法一:因为所以方程的两个实数根为:,函数的简图为:因而不等式的解集是.方法二: 或解得 或 ,即或.因而不等式的解集是.(2)方法一:因为,方程的解为.函数的简图为:所以,原不等式的解集是方法二:(当时,)所以原不等式的解集是(3)方法一:原不等式整理得.因为,方程无实数解,函数的简图为:所以不等式的解集是.所以原不等式的解集是.方法二:∵∴原不等式的解集是.【总结升华】1. 初学二次不等式的解法应尽量结合二次函数图象来解决,培养并提高数形结合的分析能力;2. 当时,用配方法,结合符号法则解答比较简洁(如第2、3小题);当且是一个完全平方数时,利用因式分解和符号法则比较快捷,(如第1小题).3. 当二次项的系数小于0时,一般都转化为大于0后,再解答.考点二:含字母系数的一元二次不等式的解法例2.解下列关于x的不等式(1)x2-2ax≤-a2+1; (2)x2-ax+1>0; (3)x2-(a+1)x+a<0; 【思路点拨】解不等式时首先应判断两根的大小,若不能判断两根的大小应分类讨论;【解析】(1) ∴原不等式的解集为.(2) Δ=a2-4当Δ>0,即a>2或a<-2时,原不等式的解集为当Δ=0,即a=2或-2时,原不等式的解集为.当Δ<0,即-21时,原不等式的解集为{x|1





