好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

vasp的分子动力学模拟.docx

26页
  • 卖家[上传人]:s9****2
  • 文档编号:533563390
  • 上传时间:2023-11-07
  • 文档格式:DOCX
  • 文档大小:41.69KB
  • / 26 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • vasp的分子动力学模拟VASP 2010-01-15 02:26:36阅读57评论0字号:大中小vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度 方面有较好的优势缺点:可选系综太少尽管如此,对于大多数有关分子动力学的任务还是可以胜任的主要使用的系综是NVT和NVE下面我将对主要参数进行介绍!一般做分子动力学的时候都需要较多原子,一般都超过100个当原子数多的时候,k点实际就需要较少了有的时候用一个k点就行,不过这都需要严格 的测试通常超过200个原子的时候,用一个k点,即Gamma点就可以了INCAR:EDIFF —般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响 大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小IBRION=0分子动力学模拟IALGO=48 —般用48,对于原子数较多,这个优化方式较好NSW=1000 多少个时间步长POTIM=3时间步长,单位fs,通常1到3.ISIF=2计算外界的压力.NBLOCK= 1 多少个时间步长,写一次 CONTCAR,CHG 和 CHGCAR,PCDAT.KBLOCK=50 NBLOCK*KBLOCK 个步长写一次 XDATCAR.ISMEAR=-1费米迪拉克分布.SIGMA =0.05单位:电子伏NELMIN=8 一般用6到8,最小的电子scf数•太少的话,收敛的不好.LREAL=AAPACO=10径向分布函数距离,单位是埃.NPACO=200径向分布函数插的点数.LCHARG=F尽量不写电荷密度,否则CHG文件太大.TEBEG=300初始温度.TEEND=300终态温度。

      不设的话,等于TEBEG.SMASS -3 NVE ensemble;-1用来做模拟退火大于0 NVT系综转】vasp的分子动力学模拟E ^宀"★★★★★★★★小木虫(金币+1):奖励一下,谢谢提供资源uuv2010(金币+ 1):您是否可以做一个专题,详细讲讲怎么做?比如第一步需要干什么,第二步 需要干什么,结果怎么分析……如果能做一个这样完整的专题就太好了,不知道您是否有兴趣? 2011-07-13 18:20:12uuv2010(金币 + 1):多谢提供资源 2011-07-16 17:39:55uuv2010(金币+5, 1ST强帖+ 1):多谢您的详细讲解!感谢就此专题与大家分享! 2011-08-12 18:25:12vasp做分子动力学的好处,由于vasp是近些年开发的比较成熟的软件,在做电子scf速度方面有较好的优势缺点:可选系综太少尽管如此,对于大多数有关分子动力学的任务还是可以胜任的主要使用的系综是NVT和NVE下面我将对主要参数进行介绍!一般做分子动力学的时候都需要较多原子,一般都超过100个当原子数多的时候,k点实际就需要较少了有的时候用一个k点就行,不过这都需要严格的测试。

      通常超过200个原子的时候,用一个k点,即Gamma点就可以了INCAR:EDIFF —般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小IBRION=0分子动力学模拟IALGO=48 —般用48,对于原子数较多,这个优化方式较好NSW=1000 多少个时间步长POTIM=3时间步长,单位fs,通常1到3.ISIF=2计算外界的压力.NBLOCK= 1 多少个时间步长,写一次 CONTCAR, CHG 和 CHGCAR, PCDAT.KBLOCK=50 NBLOCK*KBLOCK 个步长写一次 XDATCAR.ISMEAR=-1费米迪拉克分布.SIGMA =0.05单位:电子伏NELMIN=8 —般用6到8,最小的电子scf数.太少的话,收敛的不好.LREAL=AAPACO=10径向分布函数距离,单位是埃.NPACO=200径向分布函数插的点数.LCHARG=F尽量不写电荷密度,否则CHG文件太大.TEBEG=300初始温度.TEEND=300终态温度不设的话,等于TEBEG.SMASS -3 NVE ensemble;-1用来做模拟退火。

      大于0 NVT系综/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////1)收敛判据的选择结构弛豫的判据一般有两种选择:能量和力。

      这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的但是数值计算过程上的差异导致以二者为判据的收敛速度 差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度这是因为力的计算是在能量的 基础上进行的,能量对坐标的一阶导数得到力计算量的增大和误差的传递导致力收敛慢 到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量为判据就够 了;关心力相关量的人,没有选择,只能用力作为收敛标准对于超胞体系的结构优化,文 献大部分采用Gamma点做单点优化这个时候即使采用力为判据(EDIFFG=-0.02),在 做静态自洽计算能量的时候,会发现,原本已经收敛得好好的力在不少敏感位置还是超过了 结构优化时设置的标准这个时候,是不是该怀疑对超胞仅做Gamma点结构优化的合理性 呢?是不是要提高K点密度再做结构优化呢在我看来,这取决于所研究的问题的复杂程度我们的计算从原胞开始,到超胞,到掺杂结 构,到吸附结构,到反应和解离每一步都在增加复杂程度结构优化终点与初始结构是有 关的,如果遇到对初始结构敏感的优化,那就头疼了而且,还要注意到,催化反应不仅与 原子本身及其化学环境有关,还会与几何构型有关。

      气固催化反应过程是电子的传递过程, 也是分子拆分与重新组合的过程如果优化终点的构型不同,可能会导致化学反应的途径上 的差异仅从这一点来看,第一性原理计算的复杂性,结果上的合理性判断都不是手册上写 的那么简单对于涉及构型敏感性的结构优化过程,我觉得,以力作为收敛判据更合适而且需要在Gamma点优化的基础上再提高K点密度继续优化,直到静态自洽计算时力也是达到收敛标 准的2)结构优化参数设置结构优化,或者叫弛豫,是后续计算的基础其收敛性受两个主要因素影响:初始结构的合 理性和弛豫参数的设置初始结构初始结构包括原子堆积方式,和自旋、磁性、电荷、偶极等具有明确物理意义的模型相关参 数比如掺杂,表面吸附,空位等结构,初始原子的距离,角度等的设置需要有一定的经验 积累DFT计算短程强相互作用(相对于范德华力),如果初始距离设置过远(如超过4 埃),则明显导致收敛很慢甚至得到不合理的结果比较好的设置方法可以参照键长比如CO在0顶位的吸附,可以参照CO2中C-O键长来 设置(如增长20%)也可以参照文献记住一些常见键长,典型晶体中原子间距离等参 数,有助于提高初始结构设置的合理性实在不行,可以先在小体系上测试,然后再放到大 体系中算。

      弛豫参数弛豫参数对收敛速度影响很大,这一点在计算工作没有全部铺开时可能不会觉察到有什么不 妥,反正就给NSW设置个''无穷大〃的数,最后总会有结果的但是,时间是宝贵的,恰当的设置3小时就收敛的结果,不恰当的设置可能要一个白天加一个黑夜如果你赶文章或者 赶着毕业,你就知道这意味这什么结构优化分电子迭代和离子弛豫两个嵌套的过程电子迭代自洽的速度,有四个响很大的因 素:初始结构的合理性,k点密度,是否考虑自旋和高斯展宽(SIGMA);离子弛豫的收敛 速度,有三个很大的影响因素:弛豫方法(IBRION)涉长(POTIM)和收敛判据(EDIFFG).一般来说,针对理论催化的计算,初始结构都是不太合理的因此一开始采用很粗糙的优化(EDIFF=0.001, EDIFFG=-0.2),很低的K点密度(Gamma),不考虑自旋就可以了,这样NSWV60的设置就比较好其它参数可以默认经过第一轮优化,就可以进入下一步细致的优化了就我的经验,EDIFF=1E-4,EDIFFG=-0.05,不考虑自旋,IBRION=2,其它默认,NSW=100;跑完后可以设置IBRION = 1,减小OPTIM (默认为0.5,可以设置0.2)继续优化。

      优化的时候让它自己闷头跑是不对的,经常看看中间过程,根据情况调节优化参数是可以很好的提高优化速度这个时候,提交两个以上的任务排队是好的方式,一个在调整的时候,下一个可以接着运行,不会因为停下当前任务导致机器空闲无论结构优化还是静态自洽,电子步的收敛也常常让新手头痛如果电子步不能在40步内 收敛,要么是参数设置的问题,要么是初始模型太糟糕(糟糕的不是一点点)静态自洽过程电子步不收敛一般是参数设置有问题这个时候,改变迭代算法(ALGO), 提高高斯展宽(SIGMA增加),设置自洽延迟(NELMDL)都是不错的方法对于大体系比 较难收敛的话,可以先调节AMIN,BMIX跑十多步,得到电荷密度和波函数,再重新计算 实在没办法了,可以先放任它跑40步,没有收敛的迹象的话,停下来,得到电荷密度和波 函数后重新计算一般都能在40步内收敛对于离子弛豫过程,不调节关系也不大开始两个离子步可能要跑满60步(默认的),后 面就会越来越快了总的说来,一般入门者,多看手册,多想多理解,多上机实践总结,比较容易提高到一个熟 练操作工的水平如果要想做到''精确打击”,做到能在问题始发的时候就立刻采取有效措施来解决,就需要回 归基础理论和计算方法上来了。

      3)优化结果对初始结构和''优化路径〃的依赖原子吸附问题不大,但是小分子吸附,存在初始构型上的差异oslab上水平放置,还是垂直 放置,可能导致收敛结果上的差异根据H-K理论,理想情况下,优化得到的应该是全局 最小,但在数值计算的时候可能经常碰到不是全局最小的情况实际操作中发现,多个不同 初始结构优化收敛后在能量和结构上存在一定差异为了加快收敛速度,特别是对于表面-分子吸附结构,初始放松约束,比如EDIFF=1E-3,EDIFFG=-0.3,NSW=30可能是很好的设置但是下面的情况应当慎重:EDIFF=1E-3;EDIFFG=-0.1; !或者更小NSW=500;!或。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.