2021全国高考乙卷数学(理)试题(解析版).pdf
21页绝密绝密启用前启用前 2021 年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试 理科数学理科数学 注意事项:注意事项: 1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上答卷前,考生务必将自己的姓名、准考证号填写在答题卡上 2回答选择题时回答选择题时,选出每小题答案后选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑用铅笔把答题卡上对应题目的答案标号涂黑如需改如需改 动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上,写在动,用橡皮擦干净后,再选涂其他答案标号回答非选择题时,将答案写在答题卡上,写在 本试卷上无效本试卷上无效 3考试结束后,将本试卷和答题卡一并交回考试结束后,将本试卷和答题卡一并交回 一、选择题:本题共一、选择题:本题共 12 小题,每小题小题,每小题 5 分,共分,共 60 分在每小题给出的四个选项中,只有一分在每小题给出的四个选项中,只有一 项是符合题目要求的项是符合题目要求的 1. 设 2346zzzzi,则z () A.1 2iB.1 2iC.1 iD.1i 【答案】C 【解析】 【分析】设zabi,利用共轭复数的定义以及复数的加减法可得出关于a、b的等式,解出这两个未知 数的值,即可得出复数z. 【详解】设zabi,则z abi ,则234646zzzzabii, 所以, 44 66 a b ,解得1ab,因此,1zi . 故选:C. 2. 已知集合 21,Ss snnZ,41,Tt tnnZ,则ST=() A.B.SC.TD.Z 【答案】C 【解析】 【分析】分析可得TS,由此可得出结论. 【详解】任取tT,则41221tnn ,其中nZ,所以,tS,故TS, 因此,STT. 故选:C. 3. 已知命题:,sin1pxx R命题:qx R | | e1 x ,则下列命题中为真命题的是() A. pq B. pq C. pq D.pq 【答案】A 【解析】 【分析】由正弦函数的有界性确定命题p的真假性,由指数函数的知识确定命题q的真假性,由此确定正 确选项. 【详解】由于sin0=0,所以命题p为真命题; 由于 x ye在R上为增函数,0 x ,所以 | |0 1 x ee,所以命题q为真命题; 所以p q 为真命题, pq 、p q 、pq为假命题. 故选:A 4. 设函数 1 ( ) 1 x f x x ,则下列函数中为奇函数的是() A.11f xB.11f xC.11f xD.11f x 【答案】B 【解析】 【分析】分别求出选项的函数解析式,再利用奇函数的定义即可. 【详解】由题意可得 12 ( )1 11 x f x xx , 对于 A, 2 112f x x 不是奇函数; 对于 B, 2 11f x x 是奇函数; 对于 C, 2 112 2 f x x ,定义域不关于原点对称,不是奇函数; 对于 D, 2 11 2 f x x ,定义域不关于原点对称,不是奇函数. 故选:B 【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题. 5. 在正方体 1111 ABCDABC D中,P 为 11 B D的中点,则直线PB与 1 AD所成的角为() A. 2 B. 3 C. 4 D. 6 【答案】D 【解析】 【分析】平移直线 1 AD至 1 BC,将直线PB与 1 AD所成的角转化为PB与 1 BC所成的角,解三角形即可. 【详解】 如图,连接 11 ,BC PC PB,因为 1 AD 1 BC, 所以 1 PBC或其补角为直线PB与 1 AD所成的角, 因为 1 BB 平面 1111 DCBA,所以 11 BBPC,又 111 PCB D, 1111 BBB DB, 所以 1 PC 平面 1 PBB,所以 1 PCPB, 设正方体棱长为 2,则 1111 1 2 2,2 2 BCPCD B, 1 1 1 1 sin 2 PC PBC BC ,所以 1 6 PBC . 故选:D 6. 将 5 名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶 4 个项目进行培训,每名志愿者只分 配到 1 个项目,每个项目至少分配 1 名志愿者,则不同的分配方案共有() A. 60 种B. 120 种C. 240 种 D. 480 种 【答案】C 【解析】 【分析】先确定有一个项目中分配 2 名志愿者,其余各项目中分配 1 名志愿者,然后利用组合,排列,乘 法原理求得. 【详解】根据题意,有一个项目中分配 2 名志愿者,其余各项目中分配 1 名志愿者,可以先从 5 名志愿者 中任选 2 人,组成一个小组,有 2 5 C种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的 位置,四个不同的元素在四个不同的位置的排列方法数有 4!种,根据乘法原理,完成这件事,共有 2 5 4!240C 种不同的分配方案, 故选:C. 【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排 思想求解. 7. 把函数( )yf x图像上所有点的横坐标缩短到原来的 1 2 倍,纵坐标不变,再把所得曲线向右平移 3 个 单位长度,得到函数sin 4 yx 的图像,则( )f x () A. 7 sin 212 xx B.sin 212 x C. 7 sin 2 12 x D.sin 2 12 x 【答案】B 【解析】 【分析】解法一:从函数( )yf x的图象出发,按照已知的变换顺序,逐次变换,得到2 3 yfx , 即得2sin 34 fxx ,再利用换元思想求得( )yf x的解析表达式; 解法二:从函数sin 4 yx 出发,逆向实施各步变换,利用平移伸缩变换法则得到( )yf x的解析表 达式. 【详解】解法一:函数( )yf x图象上所有点的横坐标缩短到原来的 1 2 倍,纵坐标不变,得到(2 )yfx 的图象,再把所得曲线向右平移 3 个单位长度,应当得到2 3 yfx 的图象, 根据已知得到了函数sin 4 yx 的图象,所以2sin 34 fxx , 令2 3 tx ,则, 234212 tt xx , 所以 sin 212 t f t ,所以 sin 212 x f x ; 解法二:由已知的函数sin 4 yx 逆向变换, 第一步:向左平移 3 个单位长度,得到sinsin 3412 yxx 的图象, 第二步:图象上所有点的横坐标伸长到原来的 2 倍,纵坐标不变,得到sin 212 x y 的图象, 即为 yf x的图象,所以 sin 212 x f x . 故选:B. 8. 在区间(0,1)与(1,2)中各随机取 1 个数,则两数之和大于 7 4 的概率为() A. 7 9 B. 23 32 C. 9 32 D. 2 9 【答案】B 【解析】 【 分 析 】 设 从 区 间( ) () 0,1 , 1,2中 随 机 取 出 的 数 分 别 为 , x y , 则 实 验 的 所 有 结 果 构 成 区 域 为 ,01,12x yxy , 设 事 件A表 示 两 数 之 和 大 于 7 4 , 则 构 成 的 区 域 为 7 ,01,12, 4 Ax yxyxy ,分别求出,A对应的区域面积,根据几何概型的的概率公式即 可解出 【详解】如图所示: 设从区间( ) () 0,1 , 1,2中随机取出的数分别为 , x y,则实验的所有结果构成区域为 ,01,12x yxy ,其面积为1 11S 设事件A表示两数之和大于 7 4 ,则构成的区域为 7 ,01,12, 4 Ax yxyxy ,即图中的阴影 部分,其面积为 13323 1 24432 A S ,所以 23 32 A S P A S 故选:B. 【点睛】本题主要考查利用线性规划解决几何概型中的面积问题,解题关键是准确求出事件,A对应的区 域面积,即可顺利解出 9. 魏晋时刘徽撰写的海岛算经是关测量的数学著作,其中第一题是测海岛的高如图,点E,H,G 在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度, 称为“表高”,EG称为“表距”, GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB() A. 表高 表距 表目距的差 表高B. 表高 表距 表目距的差 表高 C. 表高 表距 表目距的差 表距D. 表高 表距 - 表目距的差 表距 【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出 【详解】如图所示: 由平面相似可知,, DEEH FGCG ABAHABAC ,而DEFG,所以 DEEHCGCGEHCGEH ABAHACACAHCH ,而CHCEEHCGEHEG, 即 CGEHEGEGDE ABDEDE CGEHCGEH + 表高 表距 表高 表目距的差 故选:A. 【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出 10. 设0a ,若xa 为函数 2 fxa xaxb的极大值点,则() A.abB.abC. 2 aba D. 2 aba 【答案】D 【解析】 【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分 类讨论,画出图象,即可得到, a b所满足的关系,由此确定正确选项. 【详解】若ab,则 3 f xa xa为单调函数,无极值点,不符合题意,故ab. f x有x a 和xb两个不同零点, 且在xa左右附近是不变号, 在xb左右附近是变号的.依题意, 为函数的极大值点,在xa左右附近都是小于零的. 当0a 时,由xb, 0f x ,画出 fx的图象如下图所示: 由图可知ba,0a ,故 2 aba . 当0a 时,由xb时, 0f x ,画出 fx的图象如下图所示: 由图可知ba,0a ,故 2 aba . 综上所述, 2 aba 成立. 故选:D 【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答. 11. 设B是椭圆 22 22 :1(0) xy Cab ab 的上顶点,若C上的任意一点P都满足| | 2PBb,则C的离心 率的取值范围是() A. 2 ,1 2 B. 1 ,1 2 C. 2 0, 2 D. 1 0, 2 【答案】C 【解析】 【分析】设 00 ,P xy,由0,Bb,根据两点间的距离公式表示出PB,分类讨论求出PB的最大值,再 构建齐次不等式,解出即可 【详解】设 00 ,P xy,由0,Bb,因为 22 00 22 1 xy ab , 222 abc ,所以 2 2234 222 2222 0 0000 2222 1 ycbb PBxybaybyab bbcc , 因为 0 byb ,当 3 2 b b c ,即 22 bc 时, 2 2 max 4PBb,即 max 2PBb,符合题意,由 22 bc 可 得 22 2ac ,即 2 0 2 e ; 当 3 2 b b c ,即 22 bc 时, 4 2 22 2max b PBab c ,即 4 222 2 4 b abb c ,化简得, 2 22 0cb,显 然该不等式不成立 故选:C 【点睛】本题解题关键是如何求出PB的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论 函数的单调性从而确定最值 12. 设2ln1.01a , ln1.02b ,1.041c 则() A.abcB.bcaC.bacD.cab 【答案】B 【解析】 【分析】利用对数的运算和对数函数的单调性不难对 a,b 的大小作出判定,对于 a 与 c,b 与 c 的大小关系, 将 0.01 换成 x,分别构造函数 2ln 1141f xxx, ln 12141g xxx, 利用导数分 析其在 0 的右侧包括 0.01 的较小范围内的单调性,结合 f(0)=0,g(0)=0 即可得出 a 与 c,b 与 c 的大小关系. 【详解】 2 22 2ln1.01ln1.01ln 1 0.01ln 1 2 0.01 0.01ln。





