
2023年中考数学考点针对练习 第 12 讲 二次函数的图象及其性质
3页第 12 讲 二次函数的图象及其性质一.函数关系式(共1小题)1.(2022•大连)汽车油箱中有汽油30L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤300时,y与x的函数解析式是( )A.y=0.1x B.y=﹣0.1x+30 C.y=300x D.y=﹣0.1x2+30x二.二次函数的图象(共1小题)2.(2021•阜新)如图,二次函数y=a(x+2)2+k的图象与x轴交于A,B(﹣1,0)两点,则下列说法正确的是( )A.a<0 B.点A的坐标为(﹣4,0) C.当x<0时,y随x的增大而减小 D.图象的对称轴为直线x=﹣2三.二次函数的性质(共2小题)3.(2022•阜新)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是( )A.点(0,2)在函数图象上 B.开口方向向上 C.对称轴是直线x=1 D.与直线y=3x有两个交点4.(2022•朝阳)如图,二次函数y=ax2+bx+c(a为常数,且a≠0)的图象过点(﹣1,0),对称轴为直线x=1,且2<c<3,则下列结论正确的是( )A.abc>0 B.3a+c>0 C.a2m2+abm≤a2+ab(m为任意实数) D.﹣1<a<−23四.抛物线与x轴的交点(共1小题)5.(2020•阜新)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )A.图象的开口向上 B.图象的顶点坐标是(1,3) C.当x<1时,y随x的增大而增大 D.图象与x轴有唯一交点五.二次函数图象与系数的关系(共3小题)6.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=−12,a﹣b+c=−32.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数( )A.2 B.3 C.4 D.57. (2022•辽宁)抛物线y=ax2+bx+c的部分图象如图所示,对称轴为直线x=﹣1,直线y=kx+c与抛物线都经过点(﹣3,0).下列说法:①ab>0;②4a+c>0;③若(﹣2,y1)与(12,y2)是抛物线上的两个点,则y1<y2;④方程ax2+bx+c=0的两根为x1=﹣3,x2=1;⑤当x=﹣1时,函数y=ax2+(b﹣k)x有最大值.其中正确的个数是( )A.2 B.3 C.4 D.58.(2022•锦州)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0)和点(2,0),以下结论:①abc<0;②4a﹣2b+c<0;③a+b=0;④当x<12时,y随x的增大而减小.其中正确的结论有 .(填写代表正确结论的序号)六.动点问题的函数图象(共3小题)9.(2021•朝阳)如图,在正方形ABCD中,AB=4,动点M从点A出发,以每秒1个单位长度的速度沿射线AB运动,同时动点N从点A出发,以每秒2个单位长度的速度沿折线AD→DC→CB运动,当点N运动到点B时,点M,N同时停止运动.设△AMN的面积为y,运动时间为x(s),则下列图象能大致反映y与x之间函数关系的是( )A. B. C. D.10.(2021•锦州)如图,在四边形DEFG中,∠E=∠F=90°,∠DGF=45°,DE=1,FG=3,Rt△ABC的直角顶点C与点G重合,另一个顶点B(在点C左侧)在射线FG上,且BC=1,AC=2.将△ABC沿GF方向平移,点C与点F重合时停止.设CG的长为x,△ABC在平移过程中与四边形DEFG重叠部分的面积为y,则下列图象能正确反映y与x函数关系的是( )A. B. C. D.11.(2021•鞍山)如图,△ABC是等边三角形,AB=6cm,点M从点C出发沿CB方向以1cm/s的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以2cm/s的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作MP∥CA交AB于点P,连接MN,NP,作△MNP关于直线MP对称的△MN′P,设运动时间为ts,△MN′P与△BMP重叠部分的面积为Scm2,则能表示S与t之间函数关系的大致图象为( )A. B. C. D.。