好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

人教版-数学-八年级上册-易错点突破和重难点解析.docx

4页
  • 卖家[上传人]:杏**
  • 文档编号:284464327
  • 上传时间:2022-04-28
  • 文档格式:DOCX
  • 文档大小:17.76KB
  • / 4 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 人教版-数学-八年级上册-易错点突破和重难点解析 易错点突破和重难点析解 易错点突破 1.运用三角形三边关系性质致误 例1 若等腰三角形的一条边长为6厘米,另一边长为2厘米,则它的周长为( ). A .10厘米 B .14厘米 C .10厘米或14厘米 D .无法确定 错解:由于本题未指明所给边长是等腰三角形的腰还是底,所以需讨论:①当腰长为6厘米时,底边长为2厘米,则周长为()66214cm ++=;②当腰长为2厘米时,底边长为6厘米,则周长为()62210cm ++=. 故选C. 分析:本题错在没有注意到三角形成立的条件:“三角形的任意两边之和大于第三边”,当腰长为2厘米,底边长为6厘米时,不能构成三角形. 正解:本题只能把6厘米作为腰,2厘米作为底,故三角形的周长为14厘米,故选B. 2.应用判定方法致误 例2 如图3,已知AB=DC ,OA=OD ,∠A=∠D. 问∠1=∠2吗?试说明理由. 错解:∠1=∠2. 理由如下: 在△AOB 和△DOC 中,因为AB=DC ,OA=OD ,∠AOB=∠DOC. 所以△AOB≌△DOC,所以∠1=∠2. 分析:不存在“角角角(AAA )”和“边边角(SSA )”的判定方法,即对于一般三角形,“有三个角对应相等的两个三角形不一定全等”和“有两边和其中一边的对角对应相等的两个三角形不一定全等.” 正解:在△AOB 和△DOC 中,因为AB=DC ,∠A=∠D,OA=OD. 所以△AOB≌△DOC(SAS ),所以∠1=∠2. 3.不理解“对应”致误 例3 已知在两个直角三角形中,有一对锐角相等,又有一组边相等,那么这两个三角形是否全等? 错解:这两个三角形全等. 分析:对“ASA”全等判定法中“对应边相等”没有理解,错把边相等当成对应边相等. 正解:这两个三角形不一定全等. 如图4所示,在Rt EDC ?,12∠=∠,CD=AB ,90C C ∠=∠=?,显然ABC ?与EDC ?不全等. 重难点析解 图3 图4 易错点突破和重难点析解 易错点突破 1.运用三角形三边关系性质致误 例1 若等腰三角形的一条边长为6厘米,另一边长为2厘米,则它的周长为( ). A .10厘米 B .14厘米 C .10厘米或14厘米 D .无法确定 错解:由于本题未指明所给边长是等腰三角形的腰还是底,所以需讨论:①当腰长为6厘米时,底边长为2厘米,则周长为()66214cm ++=;②当腰长为2厘米时,底边长为6厘米,则周长为()62210cm ++=. 故选C. 分析:本题错在没有注意到三角形成立的条件:“三角形的任意两边之和大于第三边”,当腰长为2厘米,底边长为6厘米时,不能构成三角形. 正解:本题只能把6厘米作为腰,2厘米作为底,故三角形的周长为14厘米,故选B. 2.应用判定方法致误 例2 如图3,已知AB=DC ,OA=OD ,∠A=∠D. 问∠1=∠2吗?试说明理由. 错解:∠1=∠2. 理由如下: 在△AOB 和△DOC 中,因为AB=DC ,OA=OD ,∠AOB=∠DOC. 所以△AOB≌△DOC,所以∠1=∠2. 分析:不存在“角角角(AAA )”和“边边角(SSA )”的判定方法,即对于一般三角形,“有三个角对应相等的两个三角形不一定全等”和“有两边和其中一边的对角对应相等的两个三角形不一定全等.” 正解:在△AOB 和△DOC 中,因为AB=DC ,∠A=∠D,OA=OD. 所以△AOB≌△DOC(SAS ),所以∠1=∠2. 3.不理解“对应”致误 例3 已知在两个直角三角形中,有一对锐角相等,又有一组边相等,那么这两个三角形是否全等? 错解:这两个三角形全等. 分析:对“ASA”全等判定法中“对应边相等”没有理解,错把边相等当成对应边相等. 正解:这两个三角形不一定全等. 如图4所示,在Rt EDC ?,12∠=∠,CD=AB ,90C C ∠=∠=?,显然ABC ?与EDC ?不全等. 重难点析解 图3 图4 。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.