
勾股定理说课稿范文集合8篇.docx
17页勾股定理说课稿范文集合8篇勾股定理说课稿范文集合8篇作为一名人民教师,通常需要准备好一份说课稿,说课稿有助于教学取得成功、提高教学质量怎样写说课稿才更能起到其作用呢?下面是小编为大家整理的勾股定理说课稿8篇,仅供参考,大家一起来看看吧勾股定理说课稿 篇1课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、 教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解二)根据课程标准,本课的教学目标是:1、 能说出勾股定理的内容2、 会初步运用勾股定理进行简单的计算和实际运用3、 在探索勾股定理的过程中,让学生经历“观察―猜想―归纳―验证”的数学思想,并体会数形结合和特殊到一般的思想方法4、 通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题―实验操作―归纳验证―问题解决―课堂小结―布置作业六部分学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体三、 教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。
二)实验操作:1、投影课本图1―1,图1―2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1―3,图1―4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。
三)归纳验证:1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性这一过程有利于培养学生严谨、科学的学习态度然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育四)问题解决:让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦完完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的勾股定理说课稿 篇2一、 教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题教学难点:用面积法(拼图法)发现勾股定理突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解二、教法与学法分析:学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境――――建立模型――――解释应用―――拓展巩固”的模式, 选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人三、 教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5感悟收获,布置作业(一)创设情境提出问题楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来65米长的云梯,如果梯子的底部离墙基的距离是25米,请问消防队员能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节实验操作模型构建1、等腰直角三角形(数格子)2、一般直角三角形(割补)问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。
通过以上实验归纳总结勾股定理设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊―― 一般的认知规律回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心四、知识拓展巩固深化基础题,情境题,探索题设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展知识的运用得到升华基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.情境题:小明妈妈买了一部29英寸(74厘米)的电视机小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了你同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。
五、感悟收获布置作业:这节课你的收获是什么?1、课本习题212、搜集有关勾股定理证明的资料板书设计 探索勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么李景萍《探索勾股定理》第一课时说课稿设计说明:1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法.2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平勾股定理说课稿 篇3一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解二)根据课程标准,本课的教学目标是:1、知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想3、解决问题:①通过拼图活动,体验数学思维的严谨性,发展形象思维②在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。
4、情感态度:①通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习②在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神三)本课的教学重点:探索和证明勾股定理本课的教学难点:用拼图的方法证明勾股定理二、教法与学法分析:教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体三、教学过程设计(一)提出问题:首先提出问题1:你知道下图所表示的意义吗?创设问题情境,20xx年在北京召开了第2。












