好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

序列的平稳性及其检验.ppt

27页
  • 卖家[上传人]:tian****1990
  • 文档编号:74164498
  • 上传时间:2019-01-27
  • 文档格式:PPT
  • 文档大小:405.81KB
  • / 27 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 1,第九章 序列的平稳性及其检验 检查序列平稳性的标准方法是单位根检验有6种单位根检验方法:ADF检验、DFGLS检验、PP检验、KPSS检验、ERS检验和NP检验,本节将介绍DF检验、ADF检验 ADF检验和PP检验方法出现的比较早,在实际应用中较为常见,但是,由于这2种方法均需要对被检验序列作可能包含常数项和趋势变量项的假设,因此,应用起来带有一定的不便;其它几种方法克服了前2种方法带来的不便,在剔除原序列趋势的基础上,构造统计量检验序列是否存在单位根,应用起来较为方便2,其中 a 是常数, t 是线性趋势函数,ut ~ i.i.d. N (0,  2) 5.3.5),(5.3.6),(5.3.7),1. DF检验 为说明DF检验的使用,先考虑3种形式的回归模型,3,(1) 如果 -1  1,则 yt 平稳(或趋势平稳) (2) 如果 =1,yt 序列是非平稳序列5.3.4)式可写成: 显然 yt 的差分序列是平稳的 (3) 如果  的绝对值大于1,序列发散,且其差分序列是非平稳的4,因此,判断一个序列是否平稳,可以通过检验  是否严格小于1来实现也就是说: 原假设H0: =1,备选假设H1: 1,(5.3.8),(5.3.9),(5.3.10),从方程两边同时减去 yt-1 得,,其中: = -1。

      5,其中: = -1,所以原假设和备选假设可以改写为 可以通过最小二乘法得到 的估计值,并对其进行显著性检验的方法,构造检验显著性水平的 t 统计量 但是,Dickey-Fuller研究了这个t 统计量在原假设下已经不再服从 t 分布,它依赖于回归的形式(是否引进了常数项和趋势项) 和样本长度T 6,Mackinnon进行了大规模的模拟,给出了不同回归模型、不同样本数以及不同显著性水平下的临界值这样,就可以根据需要,选择适当的显著性水平,通过 t 统计量来决定是否接受或拒绝原假设这一检验被称为Dickey-Fuller检验(DF检验) 上面描述的单位根检验只有当序列为AR(1)时才有效如果序列存在高阶滞后相关,这就违背了扰动项是独立同分布的假设在这种情况下,可以使用增广的DF检验方法(augmented Dickey-Fuller test )来检验含有高阶序列相关的序列的单位根7,2. ADF检验 考虑 yt 存在p阶序列相关,用p阶自回归过程来修正, 在上式两端减去 yt-1,通过添项和减项的方法,可得 其中,,,,,8,ADF检验方法通过在回归方程右边加入因变量 yt 的滞后差分项来控制高阶序列相关,(5.3.11),(5.3.12),(5.3.13),9,扩展定义将检验 (5.3.14) 原假设为:至少存在一个单位根;备选假设为:序列不存在单位根。

      序列 yt可能还包含常数项和时间趋势项判断 的估计值 是接受原假设或者接受备选假设,进而判断一个高阶自相关序列AR(p) 过程是否存在单位根 类似于DF检验,Mackinnon通过模拟也得出在不同回归模型及不同样本容量下检验 不同显著性水平的 t 统计量的临界值这使我们能够很方便的在设定的显著性水平下判断高阶自相关序列是否存在单位根10,但是,在进行ADF检验时,必须注意以下两个实际问题: (1)必须为回归定义合理的滞后阶数,通常采用AIC准则来确定给定时间序列模型的滞后阶数在实际应用中,还需要兼顾其他的因素,如系统的稳定性、模型的拟合优度等2)可以选择常数和线性时间趋势,选择哪种形式很重要,因为检验显著性水平的 t 统计量在原假设下的渐近分布依赖于关于这些项的定义11,① 若原序列中不存在单位根,则检验回归形式选择含有常数,意味着所检验的序列的均值不为0;若原序列中存在单位根,则检验回归形式选择含有常数,意味着所检验的序列具有线性趋势,一个简单易行的办法是画出检验序列的曲线图,通过图形观察原序列是否在一个偏离 0 的位置随机变动或具有一个线性趋势,进而决定是否在检验时添加常数项。

      ② 若原序列中不存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有线性趋势;若原序列中存在单位根,则检验回归形式选择含有常数和趋势,意味着所检验的序列具有二次趋势同样,决定是否在检验中添加时间趋势项,也可以通过画出原序列的曲线图来观察如果图形中大致显示了被检验序列的波动趋势呈非线性变化,那么便可以添加时间趋势项12,3. DFGLS检验 在经验研究中,尽管DF检验的DF 统计量是应用最广泛的单位根检验,但是它的检验功效偏低,尤其是在小样本条件下,数据的生成过程为高度自相关时,检验的功效非常不理想另外,DF检验和ADF检验对于含有时间趋势的退势平稳序列的检验是失效的因此,为了改进DF和ADF检验的效能,Elliott,Rothenberg和Stock (1996) 基于GLS方法的退势DF检验,简称为DFGLS检验,其基本原理如下:,13,首先定义序列 yt 的拟差分序列如下: t = 1, 2, , T 并且构造如下回归方程: t = 1, 2, , T (5.3.14) 其中xt =(1) 表示 yt 中只含有截距项,或 xt = (1,t)表示 yt 中含有截距项和趋势项。

      令表示方程(5.3.14)参数的最小二乘估计量,在实际计算中通常如下定义参数 a:,,14,,利用方程(5.3.14)的估计参数定义退势后的序列ytd为 t = 1, 2, , T 然后,对退势后的序列ytd,应用ADF检验,即为DFGLS检验检验过程如下: t = 1, 2, , T 原假设和备选假设同ADF检验一致,为 Elliott,Rothenberg和Stock (1996)给出了不同置信水平下的临界值,DFGLS检验同一般的ADF检验一样是左侧单边检验15,EViews软件中单位根检验操作说明: 双击序列名,打开序列窗口,选择View/unit Root Test,得到下图:,单位根检验窗口,16,进行单位根检验必须定义4项: 1.选择检验类型 在Test type的下拉列表中,选择检验方法EViews5提供了6种单位根检验的方法: ① Augmented Dickey-Fuller(ADF) Test ② Dickey-Fuller GLS Test ③ Phillips-Perron(PP) Test ④ Kwiatkowski , Phillips , Schmidt and Shin (KPSS) Test ⑤ Elliot , Rothenberg , and Stock Point Optimal (ERS) Test ⑥ Ng and Perron (NP) Test,17,2.选择差分形式 在Test for unit root in中确定序列在水平值、一阶差分、二阶差分下进行单位根检验。

      可以使用这个选项决定序列中单位根的个数如果检验水平值未拒绝,而在一阶差分拒绝原假设,序列中含有一个单位根,是一阶单整I(1);如果一阶差分后的序列仍然未拒绝原假设,则需要选择2阶差分一般而言,一个序列经过两次差分以后都可以变为一个平稳序列,也就是二阶单整I(2)18,3.定义检验方程中需要包含的选项 在Include in test equation中定义在检验回归中是否含有常数项、常数和趋势项、或二者都不包含这一选择很重要,因为检验统计量在原假设下的分布随这3种情况不同而变化在什么情况下包含常数项或者趋势项,刚才已经作了介绍19,4.定义序列相关阶数 在Lag lenth这个选项中可以选择一些确定消除序列相关所需的滞后阶数的准则一般而言,EViews默认SIC准则 定义上述选项后,单击OK进行检验EViews显示检验统计量和估计检验回归 单位根检验后,应检查EViews显示的估计检验回归,尤其是如果对滞后算子结构或序列自相关阶数不确定,可以选择不同的右边变量或滞后阶数来重新检验20,例5.7 检验居民消费价格指数序列的平稳性,图5.9 中国1983年1月~2007年8月的CPI(上年=100)序列,21,例5.7用AR(1) 模型模拟1983年1月~2007年8月居民消费价格指数一阶差分CPI的变化规律。

      在用ADF进行单位根检验前,需要设定序列的是否含有常数项或者时间趋势项我们可以通过画出原序列的图形来判断是否要加入常数项或者时间趋势项从图5.7的CPI图形可以看出不含有线性趋势项CPI序列的ADF检验结果(选择既无常数项也无趋势项)如下:,22,1983年1月~2007年8月的CPI序列单位根ADF检验结果可以看出不能拒绝原假设,存在单位根23,1983年1月~2007年8月的CPI序列单位根DF-GLS检验结果采用含有常数和趋势项的形式不能拒绝原假设, CPI序列存在单位根24,检验结果显示,CPI序列接受原假设,因此,CPI序列是一个非平稳的序列接着再对一阶差分CPI序列进行单位根检验,ADF检验结果如下:,检验结果显示,一阶差分CPI序列拒绝原假设,接受CPI序列是平稳序列的结论因此,CPI序列是1阶单整序列,即CPI~I(1)25,例5.9 检验中国GDP序列的平稳性,在图5.9中,我们可以观察到1978年~2006年我国GDP(现价,生产法)具有明显的上升趋势在ADF检验时选择含有常数项和时间趋势项,由SIC准则确定滞后阶数(p=4)GDP序列的ADF检验如下 : 检验结果显示,GDP序列以较大的P值,即100%的概率接受原假设,即存在单位根的结论。

      26,将GDP序列做1阶差分,然后对ΔGDP进行ADF检验(选择含有常数项和时间趋势项,由SIC准则确定滞后阶数(p=6))如下 : 检验结果显示,ΔGDP序列仍接受存在单位根的结论其他检验方法的结果也接受原假设,ΔGDP序列存在单位根,是非平稳的27,再对ΔGDP序列做差分,则Δ2GDP的ADF检验(选择不含常数项和趋势项, 由SIC准则确定滞后阶数(p=6))如下: 检验结果显示,二阶差分序列Δ2GDP在1%的显著性水平下拒绝原假设,接受不存在单位根的结论,因此可以确定GDP序列是2阶单整序列,即GDP ~I (2)。

      点击阅读更多内容
      相关文档
      新版中华民族共同体概论课件第五讲大一统与中华民族初步形成(秦汉时期)-2025年版.pptx 2023版《思想道德与法治》教学设计-绪论.docx 新版中华民族共同体概论课件第一讲中华民族共同体基础理论-2025年版.pptx 思想道德与法治(2023年版)资料第四章 明确价值要求 践行价值准则 - 副本.docx 2023版教学设计第五章 遵守道德规范 锤炼道德品格思想道德与法治2023版本课件.docx 新版中华民族共同体概论课件第二讲树立正确的中华民族历史观-2025年版.pptx 第六讲践行多边主义完善全球治理讲稿-2025秋形势与政策讲稿.docx 2023版教学设计第四章 明确价值要求 践行价值准则思想道德与法治2023版本课件.docx 新版中华民族共同体概论课件第十六讲文明新路与人类命运共同体-2025年版.pptx 第四讲阔步迈向农业强国讲稿-2025秋形势与政策讲稿.docx 2023版第一章 领悟人生真谛 把握人生方向教学设计思想道德与法治2023版本课件.docx 2023版教学设计第二章 追求远大理想 坚定崇高信念思想道德与法治2023版本课件.docx 微机原理及单片机应用技术概述.ppt 塑料成型工艺与模具结构-塑料成型工艺基础.ppt 市场营销学(第2版)市场营销管理.ppt 税收筹划(第2版)课件:跨国税收筹划问题.ppt 微机原理及单片机应用技术-初识STM32.ppt 政府与非营利组织会计(第7版)课件:政府会计的基本概念.pptx 政府与非营利组织会计(第7版)课件:政府单位会计概述.pptx 银行会计课件:无形资产与其他资产的核算.pptx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.