陕西省扶风县2024届数学八上期末考试试题附答案.doc
18页陕西省扶风县2024届数学八上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上3.考生必须保证答题卡的整洁考试结束后,请将本试卷和答题卡一并交回一、选择题(每题4分,共48分)1.下列四个“表情”图片中,不是轴对称图形的是( )A. B.C. D.2.运用乘法公式计算(x+3)2的结果是( )A.x2+9 B.x2–6x+9 C.x2+6x+9 D.x2+3x+93.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )A.等腰三角形 B.直角三角形 C.正三角形 D.等腰直角三角形4.已知三角形两边长分别为7、11,那么第三边的长可以是( )A.2 B.3 C.4 D.55.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是( )A.平行 B.相交 C.垂直 D.平行、相交或垂直6.如图,CD是直角△ABC斜边AB上的高,CB>CA,图中相等的角共有( )A.2对 B.3对 C.4对 D.5对7.一个等腰三角形的两边长分别为3和5,则它的周长为( )A.11 B.12 C.13 D.11或138.在下列长度的各组线段中,能组成三角形的是( )A.1,2,4 B.1,4,9 C.3,4,5 D.4,5,99.如图,在中,点是边上任一点,点分别是的中点,连结,若的面积为,则的面积为( )A. B. C. D.10.如图在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,BE与CD相交于点F,BF=2CE,H是BC边的中点,连接DH与BE相交于点G,下列结论中: ①∠A=67.5°;②DF=AD;③BE=2BG;④DH⊥BC 其中正确的个数是( )A.1个 B.2个 C.3个 D.4个11.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在( )A.点A处 B.点B处 C.点C处 D.点E处12.一个四边形,截一刀后得到的新多边形的内角和将A.增加 180° B.减少 180°C.不变 D.不变或增加 180°或减少 180°二、填空题(每题4分,共24分)13.如图,在中,,点、在的延长线上,是上一点,且,是上一点,且.若,则的大小为__________度.14.已知三角形三边长分别为、、(a>0,b>0),请借助构造图形并利用勾股定理进行探究,得出此三角形面积为____(用含a、b的代数式表示).15.用反证法证明在△ABC中,如果AB≠AC,那么∠B≠∠C时,应先假设________.16.已知和都是方程的解,则_______.17.一个六边形的六个内角都是120°,连续四边的长依次为2.31,2.32,2.33,2.31,则这个六边形的周长为_____.18.在△ABC中,∠ACB=90°,若AC=5,AB=13,则BC=___.三、解答题(共78分)19.(8分)计算:(1)•(6x2y)2;(2)(a+b)2+b(a﹣b).20.(8分)已知 的积不含 项与 项,求 的值是多少?21.(8分)已知一次函数y=kx+b的图象过A(1,1)和B(2,﹣1)(1)求一次函数y=kx+b的表达式;(2)求直线y=kx+b与坐标轴围成的三角形的面积;(3)将一次函数y=kx+b的图象沿y轴向下平移3个单位,则平移后的函数表达式为 ,再向右平移1个单位,则平移后的函数表达式为 .22.(10分)若正数、、满足不等式组,试确定、、的大小关系.23.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.24.(10分)按要求作图并填空:(1)作出关于轴对称的;(2)作出过点且平行于轴的直线,则点关于直线的对称点的坐标为______.(3)在轴上画出点,使最小.25.(12分)如图,在△ABC中,AB=AC=2,∠B=40°,点D段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD= ;点D从B向C运动时,∠BDA逐渐变 (填“大”或“小”);(2)当DC=2时,求证:△ABD≌△DCE;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.26.如图,在四边形中,,点E为AB上一点,且DE平分平分求证:.参考答案一、选择题(每题4分,共48分)1、B【解题分析】解:A、是轴对称图形,故不合题意;B、不是轴对称图形,故符合题意;C、是轴对称图形,故不合题意;D、是轴对称图形,故不合题意;故选B.2、C【解题分析】试题分析:运用完全平方公式可得(x+3)2=x2+2×3x+32=x2+6x+1.故答案选C考点:完全平方公式.3、C【解题分析】试题分析:根据等腰三角形的三线合一的性质求解即可.根据等腰三角形的三线合一的性质,可得三边相等,则对这个三角形最准确的判断是正三角形.故选C.考点:等腰三角形的性质点评:等腰三角形的三线合一的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.4、D【解题分析】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选D.点睛:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.5、A【解题分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【题目详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【题目点拨】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.6、D【解题分析】根据直角和高线可得三对相等的角,根据同角的余角相等可得其它两对角相等:∠A=∠DCB,∠B=∠ACD.【题目详解】∵CD是直角△ABC斜边AB上的高,∴∠ACB=∠ADC=∠CDB=90°,∴∠A+∠ACD=∠ACD+∠DCB=90°,∴∠A=∠DCB,同理得:∠B=∠ACD,∴相等的角一共有5对,故选:D.【题目点拨】本题考查了直角三角形的性质,熟练掌握同角的余角相等是解题的关键.7、D【分析】根据等腰三角形的性质分两种情况讨论可得.【题目详解】①若等腰三角形的腰长为3,底边长为5,∵3+3=6>5,∴能组成三角形,∴它的周长是:3+3+5=11;②若等腰三角形的腰长为5,底边长为3,∵5+3=8>5,∴能组成三角形,∴它的周长是:5+5+3=1,综上所述,它的周长是:11或1.故选D.【题目点拨】此题考查了等腰三角形的性质与三角形三边关系.此题难度不大,解题的关键是注意分类讨论思想的应用,小心别漏解.8、C【解题分析】试题分析:根据三角形的三边关系:两边之和大于第三边对各项逐一判断A选项,1+2<4;故不能组成三角形B选项,1+4<9; 故不能组成三角形C选项,3+4>5; 故可以组成三角形D选项,4+5=9;故不能组成三角形故选C考点:三角形的三边关系点评:此题主要考查学生对应用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定三条线段能构成一个三角形9、C【分析】根据三角形中线及中位线的性质即可得到三角形面积之间的关系,进而由的面积即可得到的面积.【题目详解】∵G,E分别是FB,FC中点∴,∴∵∴∵F是AD中点∴,∵, ∴∴,故选:C.【题目点拨】本题主要考查了三角形面积与中位线和中线的关系,熟练掌握相关性质定理是解决本题的关键.10、C【分析】根据已知条件得到△BCD是等腰直角三角形,由等腰直角三角形的性质得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根据三角形的内角和得到∠A=67.5°;故①正确;根据余角得到性质得到∠DBF=∠ACD,根据全等三角形的性质得到AD=DF,故②正确;根据BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根据全等三角形的性质得到AE=CE=AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC边的中点,得到DH⊥BC,故④正确;推出DH不平行于AC,于是得到BE≠2BG,故③错误.【题目详解】解:∵∠ABC=45°,CD⊥AB于D,∴△BCD是等腰直角三角形,∴BD=CD,∵BE平分∠ABC,∴∠ABE=22.5°,∴∠A=67.5°;故①正确;∵CD⊥AB于D,BE⊥AC于E,∴∠DBF+∠A=90°,∠ACD+∠A=90°,∴∠DBF=∠ACD,在△BDF与△CDA中,∴△BDF≌△CDA(ASA),∴AD=DF,故②正确;∵BE平分∠ABC,且BE⊥AC于E,∴∠ABE=∠CBE,∠AEB=∠CEB=90°,∴在△ABE与△CBE中,∴△ABE≌△CBE(ASA),∴AE=CE=AC,∵△BCD是等腰直角三角形,H是BC边的中点,∴DH⊥BC,故④正确;∴DH不平行于AC,∵BH=CH,∴BG≠EG;∴BE≠2BG,故③错误.故选:C.【题目点拨】本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.11、C【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【题目详解】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C。





