好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

费马大定理.docx

5页
  • 卖家[上传人]:hs****ma
  • 文档编号:430432734
  • 上传时间:2023-02-24
  • 文档格式:DOCX
  • 文档大小:17.71KB
  • / 5 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 费马大定理(Fermat's last theorem)现代表述为:当n〉2时,方程xn+y n=zn没有正整数解费马大定理的提出涉及到两位相隔 1400 年的数学家,一位是古希腊的丢番图,一位是法国的费马丢番图活动于公元 250 年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一他求解 了他这样表述的不定方程(《算术》第2卷第8题):将一个已知的平方数分为两个平方数 ( 1)现在人们常把这一表述视为求出不定方程x2+y2=z2 (2)的正整数解因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图 方程有时把不定方程称为丢番图方程关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样费马提出了 这一数学问题费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处他 去世后,才由后人收集整理出版1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空 白处写道: “另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高 于二次的幂分为两个同次的幂,这是不可能的。

      关于此,我已发现一种美妙的证法,可惜这里空白的地方 太小,写不下 ( 3)费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣后来,表述(3)被理解为:当整数n〉2时,方程xn+y n=zn (4)没有正整数解欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难, 吸引了更多的人投入证明工作这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做 “费马最后定理”,在我国,则一般称之为费马大定理费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840 年前 后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”称之为费马大定理是为了和“费马小定理”相区别,后者也是数论中的一个著名定理:设 p 为素数,而 a 与 p 互素,则 ap -a 必为 p 的倍数从费马的时代起,人们就不断进行费马大定理的试证工作巴黎科学院曾先后两次提供奖章和奖金,奖励 证明费马大定理的人,布鲁塞尔科学院也悬赏重金,但都无结果 1908 年,德国数学家佛尔夫斯克尔(F. Wolfskehl)将10万马克赠给格丁根皇家科学会,用以奖励证明费马大定理的人,悬赏期100年。

      人们先对费马大定理作了一些探讨,得出只要证明n = 4时以及n是任一奇素数p时定理成立,定理就得证 这为后来的证明指出了方向最初的证明是一个数一个数地进行的n=3的情形在公元972年已为阿拉伯人胡坚迪(al-Khujandi)所知,但他的证明有缺陷1770年欧拉给出 一个证明,但也不完善后来,高斯给出完善的证明n = 4的情形,费马本人已接近得出证明(见无穷递降法),后来欧拉等人给出了新证n = 5的情形,1823年和1826年勒让德和狄利克雷各自独立地给出证明1832年后者还证明了 n=14的情 形n=7的情形,1839年为拉梅(Lame)所证明后来,人们为研究的方便,对费马大定理作了进一步的分析对于素数p,当p不能整除xyz之积时,不 定方程xp+yp=zp (5)无正整数解(p〉2),称之为费马大定理的第一种情形,这种情形似乎容易证一些法国数学家热尔曼证明:如果p是一个奇素数,使得2p + 1也是素数,那么对于p,费马大定理的第一种 情形成立;勒让德推广了热尔曼的结果,证明:如果 p 是素数,使 4p+1, 8p+1, l0p+1, 14p+1, 16p + 1之一也是素数,则对于p,费马大定理的第一种情形成立。

      这实际上已经证明了对于所有素数p

      如1948年,日本的森岛太郎等证明对于P<57x109,第一种情形成立 1983年,人们证明了对于当时已知的最大的素数p = 286243—1,第一种情形成立1985年,英国的希斯 —布朗(R. Heath-Brown)证明:存在无穷个素数p,使第一种情形成立前人直接证明费马大定理的努力取得了许多成果,并促进了一些数学分支的发展,但离定理的证明,无疑 还有遥远的距离怎么办呢?按数学家解决问题的传统,就是要作变换—把问题转化为已知的或易于解决 的领域的“新”问题一个转化方向是把问题具体化,就是建立一个可由要证的命题推导出来的新命题(从逻辑的角度看,是要 证命题的必要条件)一般地,更具体的命题比原命题容易证明,如果证明了这个新命题,则把对原命题的 证明推进了一大步如果反驳了这个新命题,那就直接反驳了原命题:必要条件不成立的命题不成立具体化的方式取得了一批重要的成果1909年,威费里希(A. Wieferich)证明,如果对指数p,费马大 定理的第一种情形不成立,则p2可以整除2p-1 —1经过寻找,在3x109以下只有p=1093和p = 3511满 足这一条件,但这两个素数均已直接验证满足费马大定理。

      这实际上就证明了,对30亿以内的所有素数, 第一种情形都成立20世纪80年代人们更证明了费马大定理若有反例,即存在正整数x,y,z,当n〉2 时,使xn+y n=zn成立,则 n〉101800000另一个转化方向是使问题抽象化,就是建立一个可由之推导出要证明的命题的“新”命题(从逻辑的角度看, 是要证命题的充分条件)一般地说,更抽象的命题更难证明,但是一旦证明了,就能立即推出要证的命题, 并且还能得出许多别的结果来抽象化的一个结果就是求解丢番图方程,方程(5)不过是丢番图方程的一个特例经过一种代数几何学的 转化,人们把丢番图方程的解与代数曲线上的有理点(坐标都是有理数的点)联系起来了对于平面中的一条曲线,人们首先注意到的一个数值不变量是它的次数,即定义这条曲线的方程的次数 次数为一次、二次的曲线都是有理曲线(在代数几何中,它们与直线同构),它们主要是解析几何的研究对 象代数几何是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的定义代数曲线的方程一般可表示为F (u,v)=0, (6)左边为u,v的一个多项式丢番图方程就是一种代数曲线的方程人们发现,曲线上的有理点就是使等式 成立的点,即定义曲线的方程的解。

      对方程xn+y n=zn来说,两边除以zn,得令 u= ,v= ,则有un+v n=l (7)(7)被称为费马方程,由它定义的曲线被称为费马曲线于是,费马大定理转化为 “在平面中,费马曲线 在n〉2时没有坐标都是非零有理数的点”黎曼在1857年引入了代数函数,使代数几何有了较大的发展他把代数函数定义在一些互相适当联结的覆 叠的复平面上,它们后来被称为黎曼曲面,代数函数在其黎曼曲面上得以单值化若把代数曲线视为由方 程(6)确定的一个代数函数的图象,则每个代数曲线都有一个自己的(一一对应的)黎曼曲面这种黎曼 曲面有一大特点:它们恒可以经连续变换成为球面或带有n个洞(贯通的洞)的球面洞的个数被称为黎 曼曲面的从而也是与它对应的代数曲线的亏格—这是一个重要的代数几何不变量,它决定了黎曼曲面从而 代数曲线的许多性质,亏格可以作为划分代数曲线的一个标准,例如按亏格g的不同,有:g = 0:直线、圆、圆锥曲线;g=1:椭圆曲线;gN2:其他曲线,如费马曲线等1922年,英国数学家莫德尔提出一个猜想一亏格g>2的代数曲线上的有理点只有有限多个按前述转化 分析,由它立即可得出丢番图方程(由方程定义的代数曲线亏格g>2的)的解只有有限多个;进而可推出, n〉2时,方程(5)的正整数解(原始解)至多只有有限多个。

      1983年,德国数学家法尔廷斯利用法国数学家格罗唐迪克所建立的概形理论证明了莫德尔猜想,从而证明 了前述关于费马大定理的结论人们认为这是费马大定理证明中的又一次重大突破,对许多数学分支都产 生了重要的影响为此,法尔廷斯获得1986年度菲尔兹奖 1 98 5年,希斯-布朗利用法尔廷斯的结果, 证明了对于几乎所有的素数p,费马大定理成立,即如果对某些素数p,定理不成立,那么这样的p的数目 在整个素数中是微不足道的种种转化的方法既推进了所转化的领域的发展,也使费马大定理的证明取得进展可以说,以上结论已十 分接近费马大定理了,但它们毕竟不是原定理的证明,离原定理的证明尚有并非容易跨越的“一小步”1993年6月23日,星期三英国剑桥大学新落成的牛顿数学研究所的大厅里正在进行例行的学术报告会报告从上午 8 时整开始,报告人怀尔斯用了两个半小时就他关于“模形式、椭圆曲线和伽罗瓦表示”的研究 结果作了一个冗长的发言10时 30 分,在他的报告结束时,他平静地宣布:“因此,我证明了费马大定理 很快,这一消息轰动了全世界,许多一流的大众传播媒介迅速地报道了这一消息,并一致称之为“世纪性的 科学成就”那么,怀尔斯是怎样完成费马大定理的最后一步证明的呢?他继续使用转化的方法,采用的则是椭圆函数 参数化。

      20 世纪50年代,一些数学家发现椭圆函数与模函数有联系模函数也是一种人们早有研究的复变数函数, 它是定义在单位圆(或上半平面)内部且以其周界为自然边界的一种特殊解析函数人们发现,构成模函 数的种种反演变换生成一个变换群G,模函数是关于群G的自守函数这是它与椭圆函数的联系之一一 些数学家猜测,椭圆曲线可由特殊的模函数单值化,这种曲线被称为模曲线1967 年韦伊发表了这一猜想, 称为谷山-志村-韦伊猜想:所有椭圆曲线都是模曲线1971 年,一位法国数学家指出椭圆函数可与费马大定理联系起来椭圆曲线可由模函数单值化,这与代数 曲线由其黎曼曲面单值化十分相似是否也可以类比于黎曼曲面方法,从模函数中找出椭圆曲线的分类标 准对其分类,使其中与费马大定理对应的一类中无有理点呢?1986年,德国数学家符莱(G. Frey)真正把费马方程与椭圆曲线联系起来:如果u, v, w满足费马方程up+vp = wp (p>5,是素数),则可构造椭圆函数y2=x (x 一 u p) (x+v p) (8)与之对应,他要求v为偶数,u为4m+3型的奇数因而(8)只是一种所谓“半稳定性”椭圆曲线符莱进 而猜想,按他所作的对应,从谷山一志村一韦伊猜想可以推出费马大定理。

      1990年,李贝(K. Rib。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.