
三次函数的性质总结练习.doc
10页三次函数的性质三次函数f(x)=ax3+bx2+cx+d(a≠0)在高中阶段学习导数后频繁出现,同时也是其他复杂函数的重要组成部分,因此有必要对其性质有所了解,才可以做到知己知彼,百战不殆.性质一 单调性以a>0为例,如图1,记Δ=b2−3ac为三次函数图象的判别式,则图1 用判别式判断函数图象当Δ⩽0时,f(x)为R上的单调递增函数;当Δ>0时,f(x)会在中间一段单调递减,形成三个单调区间以及两个极值.性质一的证明 f(x)的导函数为f′(x)=3ax3+2bx+c,其判别式为4(b2−3ac),进而易得结论.例1 设直线l与曲线y=x3+x+1有三个不同的交点A,B,C,且|AB|=|BC|=5√,求直线l的方程.解 由|AB|=|BC|可知B为三次函数的对称中心,由性质一可得B(0,1),进而不难求得直线l的方程y=2x+1.性质二 对称性如图2,f(x)的图象关于点P(−b3a,f(−b3a))对称(特别地,极值点以及极值点对应的图象上的点也关于P对称).图2 图象的对称性反之,若三次函数的对称中心为(m,n),则其解析式可以设为f(x)=α⋅(x−m)3+β⋅(x−m)+n,其中α≠0.性质二的证明 由于f(x)=a(x+b3a)3+(c−b23a)(x+b3a)−bc3a+2b327a2+d,即f(x)=(x+b3a)3+(c−b23a)(x+b3a)+f(−b3a),于是性质二得证.例2 设函数f(x)=x(x−1)(x−a),a>1.(1)求导数f′(x),并证明f(x)有两个不同的极值点x1,x2;(2)若不等式f(x1)+f(x2)⩽0成立,求a的取值范围.(1)解 f(x)的导函数f′(x)=(x−1)(x−a)+x(x−a)+x(x−1)=3x2−2(a+2)x+a,而f′(0)f′(1)f′(a)=a>0,=1−a<0,=a(a−1)>0,于是f′(x)有两个变号零点,从而f(x)有两个不同的极值点.(2)解 根据性质二,三次函数的对称中心(a+13,f(a+13))是两个极值点对应的函数图象上的点的中点.于是f(x1)+f(x2)=2f(a+13)⩽0,即2⋅a+13⋅a−23⋅−2a+13⩽0,结合a>1,可得a的取值范围是[2,+∞).注 本题为2004年高考重庆卷理科数学第20题.性质三 切割线性质如图3,设P是f(x)上任意一点(非对称中心),过P作函数f(x)图象的一条割线AB与一条切线PT(P点不为切点),A、B、T均在f(x)的图象上,则T点的横坐标平分A、B点的横坐标.图3 切割线性质推论1 设P是f(x)上任意一点(非对称中心),过P作函数f(x)图象的两条切线PM、PN,切点分别为M、P,如图.则M点的横坐标平分P、N点的横坐标,如图4.图4 切割线性质推论一推论2 设f(x)的极大值为M,方程f(x)=M的两根为x1、x2(x1












