
中考数学总复习《三角形“垂心”定理的种证法》专题讲解及训练习题.doc
4页初三数学中考总复习:三角形“垂心”定理的7种证法 1.1定理: 三角形三条高相交于一点,这点叫做三角形的垂心(该定理俗称三角形“垂心”定理). 已知,如图(1)中,AD,BE,CF分别是边BC,CA,AB上的高. 求证: AD,BE,CF相交于一点 1.2预备定理: 1.塞瓦(Ceva)定理:设D、E、F分别是三边BC、CA、AB上的点,若,则AD,BE,CF交于一点.2.三角形“外心”定理:三角形三边的中垂线相交于一点,此点与三顶点等距,这点叫做三角形的外心.3. 三角形“内心”定理:三角形三内角平分线交于一点,此点与三边等距,这点叫做三角形的内心.1.3定理的证法 1.3.1证法1 如图(1),由已知可得,∽∽,∽三式相乘得:由塞瓦定理可得AD,BE,CF相交于一点.1.3.2证法2如图(2)分别过A、B、C做它们所在高的垂线,使之相交成.则同理,可见,CF为边的中垂线同理可得,BE为边的中垂线,AD为边的中垂线.为三边上的中垂线.由“外心”定理可知,AD、BE、CF相交于一点. 1.3.3证法3如图(3)连结DE,EF,FD,则A、B、D、E四点共圆,在和中,易知,又A、F、D、C四点共圆,,.可见,AD平分.同理可得,BE平分,CF平分.在中,由“内心”定理可得,AD,BE,CF相交于一点.1.3.4证法4如图(4)设AB边上的高CF与BC边上的高AD相交于H,连结BH并延长交AC于E.连结DF,因A、F、D、C四点共圆,又B、D、H、F四点共圆,,在 和中中,可知,,BE为边AC上的高.由此可见,高AD、BE、CF相交于一点.1.3.5证法5如图(5)设边BC,AC上的高AD,BE相交于H.连结DE,作于F。
连结CH,则A、B、D、E四点共圆,又与互余,与互余.又C、E、H、D四点共圆,,又,,C、H、F三点共线即AB边上的高CF经过H点因而三条高AD、BE、CF相交于一点.1.3.6证法6如图(6)设BC边上的高AD与AB边上的高CF相交于H,连结BH并延长交AC于E.建立如图所示的直角坐标系,并设A、B、C三点的坐标分别为:A(0,a),B(b,0),C(c,0),则H即BE为AC边上的高可见高AD、BE、CF相交于一点.1.3.7证法7如图(7),设边BC上的高AD与AB边上的高CF相交于H,连结BH并延长交AC于E设,,则即, 即可见,, 即BE是AC边上的高.三边上的高AD、BE、CF相交于一点. 上述7种证法中,其中证法2是由高斯最早发现的,所以此证法又叫做高斯“外心”证法证法3是由杨乐(我国数学家)最早(读初中时)发现的,所以此证法又叫做杨乐“内心”证法其余证法是由后人所创.- 4 -。
