
辽宁省沈阳市2023届高三周考数学试题三.doc
19页辽宁省沈阳市2023届高三周考数学试题三注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内2.答题时请按要求用笔3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:)A.1624 B.1024 C.1198 D.15602.设不等式组表示的平面区域为,若从圆:的内部随机选取一点,则取自的概率为( )A. B. C. D.3.定义,已知函数,,则函数的最小值为( )A. B. C. D.4.已知斜率为2的直线l过抛物线C:的焦点F,且与抛物线交于A,B两点,若线段AB的中点M的纵坐标为1,则p=( )A.1 B. C.2 D.45.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是( )A. B.C. D.6.如图,平面与平面相交于,,,点,点,则下列叙述错误的是( )A.直线与异面B.过只有唯一平面与平行C.过点只能作唯一平面与垂直D.过一定能作一平面与垂直7.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是( )A.(-∞,2] B.[2,+∞)C.[-2,+∞) D.(-∞,-2]8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和② B.②和③ C.③和④ D.②和④9.已知的内角、、的对边分别为、、,且,,为边上的中线,若,则的面积为( )A. B. C. D.10.下列不等式成立的是( )A. B. C. D.11.若的展开式中二项式系数和为256,则二项式展开式中有理项系数之和为( )A.85 B.84 C.57 D.5612.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。
13.设等差数列的前项和为,若,,则______,的最大值是______.14.在区间内任意取一个数,则恰好为非负数的概率是________.15.已知函数,若,则实数的取值范围为__________.16.在中,角,,的对边分别是,,,若,,则的面积的最大值为______.三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17.(12分)已知矩阵,且二阶矩阵M满足AM=B,求M的特征值及属于各特征值的一个特征向量.18.(12分)已知函数,曲线在点处的切线方程为.(Ⅰ)求,的值;(Ⅱ)若,求证:对于任意,.19.(12分)已知的内角的对边分别为,且.(Ⅰ)求;(Ⅱ)若的周长是否有最大值?如果有,求出这个最大值,如果没有,请说明理由.20.(12分)已知曲线,直线:(为参数).(I)写出曲线的参数方程,直线的普通方程;(II)过曲线上任意一点作与夹角为的直线,交于点,的最大值与最小值.21.(12分)如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.(1)求椭圆的标准方程;(2)求四边形面积的取值范围.22.(10分)如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.(1)证明:平面.(2)求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的1、B【解析】根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.【详解】依题意:1,4,8,14,23,36,54,……两两作差得:3,4,6,9,13,18,……两两作差得:1,2,3,4,5,……设该数列为,令,设的前项和为,又令,设的前项和为.易,,进而得,所以,则,所以,所以.故选:B【点睛】本小题主要考查新定义数列的理解和运用,考查累加法求数列的通项公式,考查化归与转化的数学思想方法,属于中档题.2、B【解析】画出不等式组表示的可行域,求得阴影部分扇形对应的圆心角,根据几何概型概率计算公式,计算出所求概率.【详解】作出中在圆内部的区域,如图所示,因为直线,的倾斜角分别为,,所以由图可得取自的概率为.故选:B【点睛】本小题主要考查几何概型的计算,考查线性可行域的画法,属于基础题.3、A【解析】根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.4、C【解析】设直线l的方程为x=y,与抛物线联立利用韦达定理可得p.【详解】由已知得F(,0),设直线l的方程为x=y,并与y2=2px联立得y2﹣py﹣p2=0,设A(x1,y1),B(x2,y2),AB的中点C(x0,y0),∴y1+y2=p,又线段AB的中点M的纵坐标为1,则y0(y1+y2)=,所以p=2,故选C.【点睛】本题主要考查了直线与抛物线的相交弦问题,利用韦达定理是解题的关键,属中档题.5、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6、D【解析】根据异面直线的判定定理、定义和性质,结合线面垂直的关系,对选项中的命题判断.【详解】A.假设直线与共面,则A,D,B,C共面,则AB,CD共面,与,矛盾, 故正确.B. 根据异面直线的性质知,过只有唯一平面与平行,故正确.C. 根据过一点有且只有一个平面与已知直线垂直知,故正确.D. 根据异面直线的性质知,过不一定能作一平面与垂直,故错误.故选:D【点睛】本题主要考查异面直线的定义,性质以及线面关系,还考查了理解辨析的能力,属于中档题.7、B【解析】由f(1)=得a2=,∴a=或a=-(舍),即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.8、D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.9、B【解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【详解】解:延长到,使,连接,则四边形为平行四边形,则,,,在中,则,得,.故选:B.【点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.10、D【解析】根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,,,错误;对于,在上单调递减,,错误;对于,,,,错误;对于,在上单调递增,,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.11、A【解析】先求,再确定展开式中的有理项,最后求系数之和.【详解】解:的展开式中二项式系数和为256故,要求展开式中的有理项,则则二项式展开式中有理项系数之和为:故选:A【点睛】考查二项式的二项式系数及展开式中有理项系数的确定,基础题.12、A【解析】画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。
13、 【解析】利用等差数列前项和公式,列出方程组,求出首项和公差的值,利用等差数列的通项公式可求出数列的通项公式,可求出的表达式,然后利用双勾函数的单调性可求出的最大值.【详解】(1)设等差数列的公差为,则,解得,所以,数列的通项公式为;(2),,令,则且,,由双勾函数的单调性可知,函数在时单调递减,在时单调递增,当或时,取得最大值为.故答案为:;.【点睛】本题考查等差数列的通项公式、前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题.14、【解析】先分析非负数对应的区间长度,然后根据几何概型中的长度模型,即可求解出“恰好为非负数”的概率.【详解】当是非负数时,,区间长度是,又因为对应的区间长度是,所以。
