
慈利县第二中学校2018-2019学年上学期高二数学12月月考试题含解析.doc
15页精选高中模拟试卷慈利县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( )A.﹣ B.﹣5 C.5 D.2. 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如表所示:甲乙丙丁平均环数x8.38.88.88.7方差ss3.53.62.25.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A.甲 B.乙 C.丙 D.丁 3. 设x,y∈R,且满足,则x+y=( ) A.1 B.2 C.3 D.44. 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A. B. C. D.5. 函数是指数函数,则的值是( )A.4 B.1或3 C.3 D.16. 设集合A={x|y=ln(x﹣1)},集合B={y|y=2x},则AB( )A.(0,+∞) B.(1,+∞) C.(0,1) D.(1,2)7. 棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )A. B. C. D.8. 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:①;②;③;④.其中函数是“函数”的个数为( )A.1 B.2 C.3 D. 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.9. 双曲线上一点P到左焦点的距离为5,则点P到右焦点的距离为( )A.13 B.15 C.12 D.1110.从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A. B. C. D.11.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则( ) A.x=﹣ B.x= C.x=﹣ D.x=12.函数y=ax+2(a>0且a≠1)图象一定过点( ) A.(0,1) B.(0,3) C.(1,0) D.(3,0) 二、填空题13.正方体ABCD﹣A1B1C1D1中,平面AB1D1和平面BC1D的位置关系为 . 14.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是 . 15.已知一个算法,其流程图如图,则输出结果是 . 16.过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=﹣8y的焦点,则|+|= . 17.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( ) A. B. C. D. 18.在中,角的对边分别为,若,的面积,则边的最小值为_______.【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.三、解答题19.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=ex,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由. 20.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次, 2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收.(1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.21.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,曲线的参数方程是是参数).(Ⅰ)写出曲线的直角坐标方程和曲线的普通方程;(Ⅱ)求的取值范围,使得,没有公共点.22.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.23.如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证: (1)直线EF∥平面PCD; (2)平面BEF⊥平面PAD. 24.从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?慈利县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】B【解析】解:∵数列{an}满足log3an+1=log3an+1(n∈N*),∴an+1=3an>0,∴数列{an}是等比数列,公比q=3.又a2+a4+a6=9,∴=a5+a7+a9=33×9=35,则log(a5+a7+a9)==﹣5.故选;B. 2. 【答案】C【解析】解:∵甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,∴丙的射击水平最高且成绩最稳定,∴从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙.故选:C.【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价. 3. 【答案】D 【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2, ∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2, ∵(y﹣2)3+2y+sin(y﹣2)=6, ∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2, 设f(t)=t3+2t+sint, 则f(t)为奇函数,且f'(t)=3t2+2+cost>0, 即函数f(t)单调递增. 由题意可知f(x﹣2)=﹣2,f(y﹣2)=2, 即f(x﹣2)+f(y﹣2)=2﹣2=0, 即f(x﹣2)=﹣f(y﹣2)=f(2﹣y), ∵函数f(t)单调递增 ∴x﹣2=2﹣y, 即x+y=4, 故选:D. 【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质. 4. 【答案】C【解析】1111]试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.5. 【答案】C【解析】考点:指数函数的概念.6. 【答案】A【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)则A∪B=(0,+∞)故选:A.【点评】本题考查了集合的化简与运算问题,是基础题目. 7. 【答案】A【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:,解得,故选A.考点:棱台的结构特征.8. 【答案】第9. 【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A. 10.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B. 11.【答案】A【解析】解:根据题意,得; =+(+) =++ =﹣+, 又∵=+x+y, ∴x=﹣,y=, 故选:A. 【点评】本题考查了空间向量的应用问题,是基础题目. 12.【答案】B 【解析】解:由于函数y=ax (a>0且a≠1)图象一定过点(0,1),故函数y=ax+2(a>0且a≠1)图象一定过点(0,3), 故选B. 【点评】本题主要考查指数函数的单调性和特殊点,属于基础题. 二、填空题13.【答案】 平行 . 【解析】解:∵AB1∥C1D,AD1∥BC1, AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=A C1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1 由面面平行的判定理我们易得平面AB1D1∥平面BC1D 故答案为:平行. 【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法. 14.【答案】 30° . 【解析】解:取AD的中点G,连接EG,GF则EGDC=2,GFAB=1, 故∠GEF即为EF与CD所成的角. 又∵FE⊥AB∴FE⊥GF∴在Rt△EFG中EG=2,GF=1故∠GEF=30°. 故答案为:30° 【点评】此题的关键是作出AD的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了. 15.【答案】 5 . 【解析】解:模拟执行程序框图,可得a=1,a=2不满足条件a2>4a+1,a=3不满足条件a2>4a+1,a=4不满足条件a2>4a+1,a=5满足条件a2>4a+1,退出循环,输出a的值为5.故答案为:5.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a的值是解题的关键,属于基本知识的考查. 16.【答案】 4 . 【解析】解:由题意可得点B和点C关于原点对称,∴|+|=2||,再根据A为抛物线x2=﹣8y的焦点,可得A(0,﹣2),∴2||=4,故答案为:。












