
实验6 Matlab数值计算实验报告.docx
12页Tutorial 6 实验报告实验名称:Matlab数值计算实验目的:1、 掌握数据统计与分析的方法;2、 掌握数据插值和曲线拟合的方法及其应用;3、 掌握多项式的常用运算实验内容:1. 利用randn函数生成符合正态分布的10X5随机矩阵A,进行如下操作:(1) 求A的最大元素和最小元素;(2) 求 A 的每行元素的和以及全部元素的和;(3) 分别对A的每列元素按升序、每行元素按降序排列2. 用 3次多项式方法插值计算1-100之间整数的平方根N149162536496481100平方根123456789103.某气象观测站测得某日6: 00-18: 00之间每隔2h的室内外温度(° C)如下表所示时间681012141618室内温度18.020.022.025.030.028.024.0室外温度15.019.024.028.034.032.030.0使用三次样条插值分别求出该日室内外6: 30-17: 30之间每隔2h各点的近似温度,并绘制 插值后的温度曲线4.已知lgx在[1,101]区间10个整数采样点的函数值如下表所示,x1112131415161718191101lgx01.04141.32221.49141.61281.70761.78531.85131.90851.95902.0043试求lgx的5次拟合多项式p(x),并绘制lgx和p(x)在[1,101]区间的函数曲线。
5.有 3 个多项式P (x) = x4 + 2x3 + 4x2 + 5,P (x) = x + 2,P (x) = x2 + 2x + 3,试进1 2 3行下列操作:1)求 P(x) = P (x) + P (x)P (x)1232)求P (x)的根3)土 ― TTn 斤匚 rrYr A 存T—土 rt_I当x取矩阵A的母元素时,求 P x 的值其中:_ -11.2-1.4_A =0.7523.5_ 052.5 _6. 求函数在指定点的数值导数f (x)»x2 +1, x = 1,2,37. 用数值方法求定积分1) I 2\. cos12 + 4sin(2t)2 + 1dt 的近似值1 01 ln(1 + x)(2) I =J 1 dx2 0 1 + x 2实验结果:A=randr, 1 Oj 5)A 二0.27600.75130. 84070.35170.07590.67970. 25510. 25430.83080. 05400.655L0. 50600. S1430.58530. 53080.1S260.69510. 34350.54970. 77920.11900. 89090. 92930.31720. 93400.49840. 95930. 35000.28580. 12990.S5970.54720. 19660.75720. 56880.34040. 13850. 25110.75370. 46940.5S530.14530. 61500.3S040. 01190.22380.25750. 47330.56780. 3371尸max ■' mazs \A))0.9597>> y=nLin1 min (A))y =0.0119>> y=EumLsmn (A))24. 49390.16220.45050. 10670. 43140.85300.79430.08380.9619a. 91060.62210.31120.22900. 0046a. i8is0.35100. 52850.91330. 7749a. 26380.51320.16560. L5240.8173a. 14550.40180. 60200.82580. 8687a. 13610.07600. 26300.53830. 0844a. 86930.23990.65410.93610. 3998a. 57970.12330. 63920. 07820. 2599a.54990. 18390.74820.44270. 8001a. 14500.2400>> B=sort(扎 1〕B =0. 16220.07820. 0046a. i3ei0.07SO0.16560.08380. 08440. 14500. 12330. 26300.15240. 1067a. 14550. 18390.31120.22900. 2599a.ibis0.23990. 52850.44270. 39980. 26380.24000. 60200.45050. 77490. 43140.35100.65410.53830. 8001a. 54990.40180. 68920.82580.8173a. 57970.51320.71820.51330. 86870. 62210.79430.99610.9619a. 91060.8530>> C=sort(虬2)C =0. 10670. 16220.43140. 45050.85300. 08380. 62210.79430.91000.96190. 0046a. i8is0.22900.31120.35100. 2638a.51320.E2860.77430.91330. 14550. 15240. 16560.40180.81730. 0760a. 13610.60200.S25S0.3S870. 0844a. 23990.26300. 53830.86930. 1233a. 399S0.57970. 65410.99610. 0782a. 18390.25990.54930.68920. 1450a. 24000.44270.74820.8001»N=[l,4^:167Vfi4?MSl:10D]N=164964811001y=12345C7S3 10»X=l;100Cchimm 1 thro 哩11012345C7S5 10C-ahnnm 11 thi6575S5960Coluinn&61 through 7061 62 殆 圧斗656667686970Columns 71 SC71 72 73 747576777875soColmTuiE 81 through flCSI 82 83 S4S38687S3S990Columns91 tixo唧i ICO91 92 93 549596ASgg100»inteip 1 (NyJ^'cubii/) ans =C olumns. 1 through 61.0000137291.71232.00002.24052.4551C ohnnni- 7 122.64942.8292^.OOOD3.16J6331S63.4661Columns 13 ttroi^i 1S3.60693.74223.87Z94.00004.12374.2435C olumns. 19 through 24435994.47304258324j69O74.79554.SSS8Columns. 2 5 through 305.00005.19665 一 2921538575.4777C olumns. 31 through 3 65.56815.65705.74465.83055.91606..0000C ohimiiE 3 7 tli 口 四1416.0829 6.1647 6.2454 6.324^ ^5.4035 6.4S10C olimin & 43 tirough 4 96.5577 6 6334 6.708.2ColutiLnE49 tlrou^h 547.00AC 7.0712 7.14:liC oluinn e55 through 砒7.41«4 7.4835 7.5500C olumn e€1 tlrough fi-67.81A2 7.9739 7J372CchimiL£^7 throi^i 7 28.1 S55 3.2464 S3C<58Cohmins 73 7 S8.5441 3.6024 S 6«C3Column £ 79 through 848.8S81 8.9442 5.0AOOColumns 85 throijjh 90S.22O1 9.2744 93234Colimin■Hrough 969.5412 9.5935 9.645-6Columns^? throijjh 100S.35O2 9.5005 9.95056.7823 «.855fi 6.92S17.2113 7.2304 734377.6159 7.SS12 7.74553.0000 8.0^23 81142SJ66S S.4203 S.4S543.7178 S.7749 8.8^179.0555 9.1107 9.165593S21 9.4354 5.4SS49.^73 9.74S6 9.7596。
