好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

新高考数学二轮复习专题14 两个经典不等式的应用 (教师版).doc

11页
  • 卖家[上传人]:gu****iu
  • 文档编号:343975784
  • 上传时间:2023-02-08
  • 文档格式:DOC
  • 文档大小:136.50KB
  • 文本预览
  • 下载提示
  • 常见问题
    • 专题14 两个经典不等式的应用 逻辑推理是得到数学结论,构建数学体系的重要方式,是数学严谨性的基本保证.利用两个经典不等式解决问题,降低了思考问题的难度,优化了推理和运算过程.1.对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.2.指数形式:ex≥x+1(x∈R),当且仅当x=0时,等号成立.进一步可得到一组不等式链:ex>x+1>x>1+lnx(x>0,且x≠1).注意:选填题可直接使用,解答题必须先证明后再使用.考点一 两个经典不等式的应用1.对数形式:x≥1+lnx(x>0),当且仅当x=1时,等号成立.证明 由题意知x>0,令f(x)=x-1-ln x,所以f′(x)=1-=,所以当f′(x)>0时,x>1;当f′(x)<0时,00时,f′(x)>0,所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,所以f(x)≥f(0)=0,即ex-x-1≥0,所以ex≥x+1.【例题选讲】[例1] (1)已知对任意x,都有xe2x-ax-x≥1+lnx,则实数a的取值范围是________.答案 (-∞,1] 解析 根据题意可知,x>0,由x·e2x-ax-x≥1+ln x,可得a≤e2x--1(x>0)恒成立,令f(x)=e2x--1,则a≤f(x)min,现证明ex≥x+1恒成立,设g(x)=ex-x-1,g′(x)=ex-1,当g′(x)=0时,解得x=0,当x<0时,g′(x)<0,g(x)单调递减,当x>0时,g′(x)>0,g(x)单调递增,故当x=0时,函数g(x)取得最小值,g(0)=0,所以g(x)≥g(0)=0,即ex-x-1≥0⇔ex≥x+1恒成立,f(x)=e2x--1=-1=-1≥-1=1,所以f(x)min=1,即a≤1.所以实数a的取值范围是(-∞,1].(2)已知函数f(x)=ex-ax-1,g(x)=ln x-ax-1,其中00,则实数a的取值范围是________.答案  解析 令M(x)=ex-x-1,x∈(0,+∞),则M′(x)=ex-1,当x∈(0,+∞)时,M′(x)>0,所以M(x)在(0,+∞)上单调递增,所以M(x)>M(0)=0,所以ex>x+1.由于00,故若∃x0∈(0,+∞),使f(x0)g(x0)>0,转化为∃x0∈(0,+∞),g(x0)>0,则g(x0)=ln x0-ax0-1>0,即a<-.令h(x)=-,h′(x)=.当x∈(0,e2)时,h′(x)>0,当x∈(e2,+∞)时,h′(x)<0,所以函数h(x)在(0,e2)上单调递增,在(e2,+∞)上单调递减.所以h(x)≤h(e2)=-=.所以00,f(x)在(-1,+∞)上单调递增;(ⅱ)当a≠0时,令f′(x)=0得x==-1,若a<0,则-1<-1,若a>0,则-1>-1.①当a<0时,f′(x)=-a>0,函数f(x)在(-1,+∞)上单调递增;当a>0时,f′(x)=,所以当x∈时,f′(x)>0,f(x)单调递增,当x∈时,f′(x)<0,f(x)单调递减,综上可得,当a≤0时,f(x)在(-1,+∞)上单调递增;当a>0时,f(x)在上单调递增,在上单调递减.(2)设函数h(x)=f(x)-g(x)=ln(x+1)+ex-ax-1,x≥0,则h′(x)=+ex-a,当a≤2时,由ex≥x+1得h′(x)=+ex-a≥+x+1-a≥0,于是,h(x)在[0,+∞)上单调递增,所以h(x)≥h(0)=0恒成立,符合题意;当a>2时,由于x≥0,h(0)=0,令函数m(x)=h′(x),则m′(x)=-+ex(x≥0).所以m′(x)≥0,故h′(x)在[0,+∞)上单调递增,而h′(0)=2-a<0.则存在一个x0>0,使得h′(x0)=0,2所以当x∈[0,x0)时,h(x)单调递减,故h(x0)0恒成立,求整数a的最大值.解析 (1)f′(x)=ex,因为函数f(x)的图象与直线y=x-1相切,所以令f′(x)=1,即ex=1,得x=0,∴切点坐标为(0,-1),则f(0)=1-a=-1,∴a=2.(2)先证明ex≥x+1,设F(x)=ex-x-1,则F′(x)=ex-1,令F′(x)=0,则x=0,当x∈(0,+∞)时,F′(x)>0;当x∈(-∞,0)时,F′(x)<0.所以F(x)在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以F(x)min=F(0)=0,即F(x)≥0恒成立.∴ex≥x+1,从而ex-2≥x-1(x=0时取等号).以ln x代换x得ln x≤x-1(当x=1时,等号成立),所以ex-2>ln x.当a≤2时,ln x0恒成立.当a≥3时,存在x,使ex-aln x不恒成立.综上,整数a的最大值为2.[例4] 已知函数f(x)=x2-(a-2)x-alnx(a∈R).(1)求函数y=f(x)的单调区间;(2)当a=1时,证明:对任意的x>0,f(x)+ex>x2+x+2.解析 (1)函数f(x)的定义域是(0,+∞),f′(x)=2x-(a-2)-=,当a≤0时,f′(x)>0对任意x∈(0,+∞)恒成立,∴函数f(x)在区间(0,+∞)上单调递增;当a>0时,由f′(x)>0得x>,由f′(x)<0,得0x2+x+2,只需证明ex-ln x-2 >0,先证明当x>0时,ex>x+1,令g(x)=ex-x-1(x>0),则g′(x)=ex-1,当x>0时,g′(x)>0,g(x)单调递增,∴当x>0时,g(x)>g(0)=0即ex>x+1,∴ex-ln x-2>x+1-ln x-2=x-ln x-1.∴只要证明x-ln x-1≥0(x>0),令h(x)=x-ln x-1(x>0),则h′(x)=1-=(x>0),易知h(x)在(0,1]上单调递减,在[1,+∞)上单调递增,3∴h(x)≥h(1)=0即x-ln x-1≥0成立,∴f(x)+ex>x2+x+2成立.[例5] 已知函数f(x)=x-1-a lnx.(1)若f(x)≥0,求a的值;(2)证明:对于任意正整数n,·…·0,由f′(x)=1-=知,当x∈(0,a)时,f′(x)<0;当x∈(a,+∞)时,f′(x)>0;所以f(x)在(0,a)单调递减,在(a,+∞)单调递增,故x=a是f(x)在(0,+∞)的唯一最小值点.因为f(1)=0,所以当且仅当a=1时,f(x)≥0,故a=1.(2)由(1)知当x∈(1,+∞)时,x-1-ln x>0.令x=1+,得ln <.从而ln +ln +…+ln <++…+=1-<1.故·…·0).因为f′(x)=ex-在(0,+∞)上是增函数,且f′(2)=0,所以当02时,f′(x)>0.所以f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.(2)当a=时,f(x)=-lnx-1,所以只要证明-lnx-1≥0即可.设g(x)=ex-ex(x>0),则g′(x)=ex-e(x>0),可知g(x)在(0,1]上是减函数,在[1,+∞)上是增函数,所以g(x)≥g(1)=0,即ex≥ex⇒≥x.又由ex≥ex(x>0)⇒x≥1+lnx(x>0),所以-lnx-1≥x-lnx-1≥0,所以-lnx-1≥0得证,所以当a=时,f(x)≥0.3.(2020·山东)已知函数f(x)=aex-1-lnx+lna.(1)当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积;(2)若f(x)≥1,求a的取值范围.3.解析 f(x)的定义域为(0,+∞),f′(x)=aex-1-.(1)当a=e时,f(x)=ex-ln x+1,f′(1)=e-1,曲线y=f(x)在点(1,f(1))处的切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.直线y=(e-1)x+2在x轴、y轴上的截距分别为,2.因此所求三角形的面积为.(2)当00.所以当x=1时,f(x)取得最小值,最小值为f(1)=1,从而f(x)≥1.当a>1时,f(x)=aex-1-ln x+ln a>ex-1-ln x≥1.综上,a的取值范围是[1,+∞).4.已知函数f(x)=aex+2x-1(其中常数e=2.718 28…是自然对数的底数).(1)讨论函数f(x)的单调性;(2)证明:对任意的a≥1,当x>0时,f(x)≥(x+ae)x.4.解析 (1)由f(x)=aex+2x-1,得f′(x)=aex+2.5①当a≥0时,f′(x)>0,函数f(x)在R上单调递增;②当a<0时,由f′(x)>0,解得xln,故f(x)在上单调递增,在上单调递减.综上所述,当a≥0时,函数f(x)在R上单调递。

      点击阅读更多内容
      相关文档
      备战高考语文 作文高分素材运用 人驾驶车“萝卜快跑”引热议.docx 备战高考语文 作文高分素材运用 0后双子星黄雨婷、盛李豪射下奥运首金.docx 人际意义与读后续写的意义构建-23年新高考英语读后续写提分技能.docx 高考数学真题分类汇编 排列组合与二项式定理5种常见考法归类(解析版)2021-2025年.docx 高考数学真题分类汇编 解三角形7种常见考法归类(解析版)2021-2025年.docx 备考高考历史提能训练 附解析[34].doc 备考高考历史提能训练 附解析[22].doc 备考高考历史提能训练 附解析[12].doc 备考高考历史提能训练 附解析[1].doc 【小纸条】多样组合情景默写小纸条(高考60篇)混编检测1.docx 语文选择性必修上册文言知识梳理.docx 高中语文反反复就考这些.docx 续写的整体叙事与构思-新高考英语读后续写提分技能.docx 高考语文反反复复用的25页答题模板.docx 2025年高考真题——语文(上海卷) 含答案.docx 2025年高考真题——化学(重庆卷)含解析.docx 用明喻修辞格增添描述力度-新高考英语读后续写提分技能.docx 读后续写语篇整合“三环四步”-新高考英语读后续写提分技能.docx 语病全解:三万字涵盖六大语病+4种方法速判+17标志巧析+五年高考精练.docx 高考数学真题分类汇编 空间向量与立体几何(解答题)6种常见考法归类(原卷版)2021-2025年.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.