
数学实验——线性代数方程组的数值解.docx
19页数学实验报告实验 5 线性代数方程组的数值解法实验实验 5 5 线性代数方程组的数值解法线性代数方程组的数值解法分 1 黄浩 2011011743一、一、实验目的实验目的1.学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析; 2.通过实例学习用线性代数方程组解决简化的实际问题二、二、实验内容实验内容1.1. 《《数学实验数学实验》》第二版(问题第二版(问题 1 1))问题叙述:问题叙述:通过求解线性方程组,理解条件数的意义和方程组性态𝐴1𝑥 = 𝑏1,𝐴2𝑥 = 𝑏2对解的影响,其中是 n 阶范德蒙矩阵,即𝐴1𝐴1=[1𝑥0𝑥20…𝑥𝑛 ‒ 10 1𝑥1𝑥21…𝑥𝑛 ‒ 11 …………… 1𝑥𝑛 ‒ 1𝑥2 𝑛 ‒ 1…𝑥𝑛 ‒ 1𝑛 ‒ 1], 𝑥𝑘= 1 + 0.1𝑘 , 𝑘 = 0,1,…,𝑛 ‒ 1是 n 阶希尔伯特矩阵,b1,b2 分别是的行和𝐴2𝐴1,𝐴2(1) 编程构造(可直接用命令产生)和 b1,b2;你能预先知道方程𝐴1𝐴2组和的解吗?令 n=5,用左除命令求解(用预先知𝐴1𝑥 = 𝑏1𝐴2𝑥 = 𝑏2道的解可验证程序) 。
2) 令 n=5,7,9,…,计算和的条件数为观察他们是否病态,做以𝐴1𝐴2下试验:b1,b2 不变,和的元素,分别加扰动𝐴1𝐴2𝐴1(𝑛,𝑛)𝐴2(𝑛,𝑛)后求解;和不变,b1,b2 的分量 b1(n),b2(n)分别加扰动 后求𝜀𝐴1𝐴2𝜀解分析 A 与 b 的微小扰动对解的影响 取 10^-10,10^-8,10^-6𝜀(3) 经扰动得到的解记做 ,计算误差,与用条件数估计的误差相比𝑥‖𝑥 ‒ 𝑥‖‖𝑥‖较模型转换及实验过程:模型转换及实验过程:((1 1)小题)小题. .数学实验报告实验 5 线性代数方程组的数值解法由 b1,b2 为,的行和,可知方程组和的精确解均为 n𝐴1𝐴2𝐴1𝑥 = 𝑏1𝐴2𝑥 = 𝑏2行全 1 的列向量在 n=5 的情况下,用 matlab 编程(程序见四.1) ,构造,𝐴1和 b1,b2,使用高斯消去法得到的解 x1,x2 及其相对误差 e1,e2(使用𝐴2excel 计算而得)为:xx1e1x2e211.0000000000000800.0000000000000801.0000000000000200.00000000000002010.999999999999463-0.0000000000005370.999999999999558-0.00000000000044211.0000000000009700.0000000000009701.0000000000020100.00000000000201010.999999999999288-0.0000000000007120.999999999996863-0.00000000000313711.0000000000001800.0000000000001801.0000000000015600.000000000001560由上表可见,当 n=5 时,所得的解都接近真值,误差在 10^-12 的量级左右。
2 2)小题)小题分别取 n=5,7,9,11,13,15,计算和的条件数 c1 和 c2, (程序见四.2) ,𝐴1𝐴2结果如下:n579111315c13.574E+058.739E+072.274E+106.518E+122.059E+158.291E+17c24.766E+054.754E+084.932E+115.227E+146.263E+173.675E+17由上表可见,二者的条件数都比较大,可能是病态的为证实和是否𝐴1𝐴2为病态,先保持 b 不变,对做扰动,得到该情况下的高斯消元解, (程序𝐴(𝑛,𝑛)见四.3) ,结果如下:(为使结果清晰简洁,在此仅列出 n=5,9,13 的情况,n=7,11,15 略去)=10^-10 时:𝜀nxx1xx20.9999999284994020.9999999370003031.0000002510851691.0000012599939300.9999996704145830.9999943300273341.0000001916677021.00000881995747350.9999999583331440.999995590021263nxx1xx20.9999975548050940.9999829278035681.0000149244303261.0012291970545280.9999603223369260.9784890657946091.0000600154317051.15774676961771190.9999435079279020.408449857681677数学实验报告实验 5 线性代数方程组的数值解法1.0000338876411232.2304238808731590.999987348370823-0.4354941236522751.0000026878626961.8788737437097660.9999997511934060.780281609027228nxx1xx21.0007784033869290.9999998767583270.9937743987274311.0000261185116641.0226872410459610.9987794790026500.9501840256039321.0233044427317511.0734106035353810.7678410435503330.9235081059886532.3669384594613431.057790678168565-4.0983444092691000.96809962810653313.4983690949393491.012769678990370-19.4039025417116410.99638464083603822.9640269119150101.000687237182600-13.9700648285337990.9999212432336596.852836905560418131.0000041151939490.000188901053803=10^-8 时:𝜀nxx1xx20.9999928500302660.9999937027771001.0000251082268421.0001259444579840.9999670418066980.9994332499390881.0000191665851081.00088161120585550.9999958333510870.999559194397072nxx1xx20.9997569218861830.9999249646886321.0014841958519581.0054025423430740.9960527298593050.9054555097425781.0059726416246391.6933262585415040.994376087847693-1.5999734614530311.0033746909787466.4079447885959670.998739698550261-5.3092689110300421.0002678327406924.86281769676550690.9999752006605240.034295576497007nxx1xx20.9980046593334370.9999998767282631.0164113342717761.0000261243251180.9384398540328910.9987792205553051.1392634494355081.0233092230919600.7883771891288210.767794467366770131.2275767009039882.367208217373958数学实验报告实验 5 线性代数方程组的数值解法0.822400779656029-4.0993377962873331.10134460129783313.5007796714360190.958029341700176-19.4078052094758501.01230286523370722.9681988664444180.997576920776780-13.9728915924515431.0002879131499596.8539364954676760.9999843910790940.000001889299579=10^-6 时:𝜀nxx1xx20.9992852977929170.9993966095201831.0025097875871361.0120678095963350.9967055393606440.9456948568165061.0019158683868581.08447466717432650.9995835068724450.957762666412834nxx1xx20.9757501420061600.9999223275065541.1480658167117691.0055924194987990.6062136691657740.9021326589030921.5958409910913531.7176938349075140.438948771633566-1.6913518835480071.3366650248743926.5980119249310320.874270161152963-5.5310139213940691.0267194461452354.99857995736680390.9975259772187880.000355009332673nxx1xx20.7071952366081760.9999998767279653.3904929638964631.000026124383261-7.8992555052967080.99877921797036220.9772809601275481.023309270903186-29.1195663172520300.76779400153262433.1329169063691252.367210915370232-23.874599377714521-4.09934773169287015.07902114649785113.500803780926434-4.782905869975354-19.4078442421848052.68118057389295422.9682405924371480.671624908087923-13.9729198644592591.0386948092493446.853947493066078130.9979195655092280.000000018893025由上表可见:a) 对于希尔伯特阵,随着阶数的增加,微小扰动对解带来的影响越来越大,到了 n=9 时,已经有了 6 倍误差的解,到了 n=13 时,甚至出现了数学实验报告实验 5 线性代数方程组的数值解法22 倍误差的解元素;而随着 的增加,解的偏差似乎也有增加的趋势,𝜀但仅凭上述表格无法具体判断(在下一小题中具体叙述) 。
b) 对于范德蒙矩阵,当 n10 时,微小扰动对范德蒙矩阵的影响急剧增加,更出现了 33 倍误差的解!此时希尔伯特阵与范德蒙阵的病态程度是类似的 (因此,我认为第一版上的参考答案不够全面)当固定 A 改变 b 时,结果与上表类似,微小扰动的影响随阶数的增加而增大,随 的增加,解的偏差也有增加的趋势方程组的解表格在此略去,程序也𝜀。












