好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

线性代数课后答案高等教育出版社.doc

22页
  • 卖家[上传人]:汽***
  • 文档编号:459245142
  • 上传时间:2022-08-19
  • 文档格式:DOC
  • 文档大小:565.50KB
  • / 22 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 加719283511第一章 行列式 1. 利用对角线法则计算下列三阶行列式: (1); 解 =2´(-4)´3+0´(-1)´(-1)+1´1´8 -0´1´3-2´(-1)´8-1´(-4)´(-1) =-24+8+16-4=-4. (3); 解 =bc2+ca2+ab2-ac2-ba2-cb2 =(a-b)(b-c)(c-a). 4. 计算下列各行列式: (1); 解 . (2); 解 . (3); 解 . (4). 解 =abcd+ab+cd+ad+1. 6. 证明: (1)=(a-b)3; 证明 =(a-b)3 . (2); 证明 . 8. 计算下列各行列式(Dk为k阶行列式): (1), 其中对角线上元素都是a, 未写出的元素都是0; 解 (按第n行展开) =an-an-2=an-2(a2-1). (2); 解 将第一行乘(-1)分别加到其余各行, 得 , 再将各列都加到第一列上, 得 =[x+(n-1)a](x-a)n第二章 矩阵及其运算1. 计算下列乘积:(5); 解 =(a11x1+a12x2+a13x3 a12x1+a22x2+a23x3 a13x1+a23x2+a33x3) . 2. 设, , 求3AB-2A及ATB. 解 , . 3. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 4. 设, , 问: (1)AB=BA吗? 解 AB¹BA. 因为, , 所以AB¹BA. (3)(A+B)(A-B)=A2-B2吗? 解 (A+B)(A-B)¹A2-B2. 因为, , , 而 , 故(A+B)(A-B)¹A2-B2. 5. 举反列说明下列命题是错误的: (1)若A2=0, 则A=0; 解 取, 则A2=0, 但A¹0. (2)若A2=A, 则A=0或A=E; 解 取, 则A2=A, 但A¹0且A¹E. (3)若AX=AY, 且A¹0, 则X=Y . 解 取 , , , 则AX=AY, 且A¹0, 但X¹Y .7. 设, 求Ak . 解 首先观察 , , , , × × × × × ×, . 用数学归纳法证明: 当k=2时, 显然成立. 假设k时成立,则k+1时, , 由数学归纳法原理知: . 8. 设A, B为n阶矩阵,且A为对称矩阵,证明BTAB也是对称矩阵. 证明 因为AT=A, 所以 (BTAB)T=BT(BTA)T=BTATB=BTAB, 从而BTAB是对称矩阵. 11. 求下列矩阵的逆矩阵: (1); 解 . |A|=1, 故A-1存在. 因为 , 故 . (3); 解 . |A|=2¹0, 故A-1存在. 因为 , 所以 . (4)(a1a2× × ×an ¹0) . 解 , 由对角矩阵的性质知 . 12. 利用逆矩阵解下列线性方程组: (1); 解 方程组可表示为 , 故 , 从而有 . 19.设P-1AP=L, 其中, , 求A11. 解 由P-1AP=L, 得A=PLP-1, 所以A11= A=PL11P-1. |P|=3, , , 而 , 故 .20. 设AP=PL, 其中, , 求j(A)=A8(5E-6A+A2). 解 j(L)=L8(5E-6L+L2) =diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). j(A)=Pj(L)P-1 . 21. 设Ak=O (k为正整数), 证明(E-A)-1=E+A+A2+× × ×+Ak-1. 证明 因为Ak=O , 所以E-Ak=E. 又因为 E-Ak=(E-A)(E+A+A2+× × ×+Ak-1), 所以 (E-A)(E+A+A2+× × ×+Ak-1)=E, 由定理2推论知(E-A)可逆, 且 (E-A)-1=E+A+A2+× × ×+Ak-1. 证明 一方面, 有E=(E-A)-1(E-A). 另一方面, 由Ak=O, 有 E=(E-A)+(A-A2)+A2-× × ×-Ak-1+(Ak-1-Ak) =(E+A+A2+× × ×+A k-1)(E-A), 故 (E-A)-1(E-A)=(E+A+A2+× × ×+Ak-1)(E-A),两端同时右乘(E-A)-1, 就有 (E-A)-1(E-A)=E+A+A2+× × ×+Ak-1. 22. 设方阵A满足A2-A-2E=O, 证明A及A+2E都可逆, 并求A-1及(A+2E)-1. 证明 由A2-A-2E=O得 A2-A=2E, 即A(A-E)=2E, 或 , 由定理2推论知A可逆, 且. 由A2-A-2E=O得 A2-A-6E=-4E, 即(A+2E)(A-3E)=-4E, 或 由定理2推论知(A+2E)可逆, 且. 证明 由A2-A-2E=O得A2-A=2E, 两端同时取行列式得 |A2-A|=2, 即 |A||A-E|=2, 故 |A|¹0, 所以A可逆, 而A+2E=A2, |A+2E|=|A2|=|A|2¹0, 故A+2E也可逆.由 A2-A-2E=O ÞA(A-E)=2E ÞA-1A(A-E)=2A-1EÞ, 又由 A2-A-2E=OÞ(A+2E)A-3(A+2E)=-4E Þ (A+2E)(A-3E)=-4 E, 所以 (A+2E)-1(A+2E)(A-3E)=-4(A+2 E)-1, . 第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1); 解 (下一步: r2+(-2)r1, r3+(-3)r1. ) ~(下一步: r2¸(-1), r3¸(-2). ) ~(下一步: r3-r2. ) ~(下一步: r3¸3. ) ~(下一步: r2+3r3. ) ~(下一步: r1+(-2)r2, r1+r3. ) ~. (3); 解 (下一步: r2-3r1, r3-2r1, r4-3r1. ) ~(下一步: r2¸(-4), r3¸(-3) , r4¸(-5). ) ~(下一步: r1-3r2, r3-r2, r4-r2. ) ~. 3. 已知两个线性变换 , , 求从z1, z2, z3到x1, x2, x3的线性变换. 解 由已知 , 所以有. 4. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1); 解 ~ ~~ ~故逆矩阵为. (2). 解 ~ ~ ~ ~ ~故逆矩阵为. 5. (2)设, , 求X使XA=B. 解 考虑ATXT=BT. 因为 , 所以 , 从而 . 9. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0). 解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵: ,此矩阵的秩为4, 其第2行和第3行是已知向量. 12. 设, 问k为何值, 可使 (1)R(A)=1; (2)R(A)=2; (3)R(A)=3. 解 . (1)当k=1时, R(A)=1; (2)当k=-2且k¹1时, R(A)=2; (3)当k¹1且k¹-2时, R(A)=3. P106/1.已知向量组 A: a1=(0, 1, 2, 3)T, a2=(3, 0, 1, 2)T, a3=(2, 3, 0, 1)T; B: b1=(2, 1, 1, 2)T, b2=(0, -2, 1, 1)T, b3=(4, 4, 1, 3)T, 证明B组能由A组线性表示, 但A组不能由B组线性表示. 证明 由 知R(A)=R(A, B)=3, 所以B组能由A组线性表示. 由 知R(B)=2. 因为R(B)¹R(B, A), 所以A组不能由B组线性表示.4. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T, (2, 1, 0)T, (1, 4, 1)T; (2) (2, 3, 0)T, (-1, 4, 0)T, (0, 0, 2)T. 解 (1)以所给向量为列向量的矩阵记为A. 因为 , 。

      点击阅读更多内容
      相关文档
      2025国开山东开大《土质学与土力学》形成性考核123答案+终结性考核答案.docx 中学综合素质知识点梳理【中学教师资格证】.docx 2025国开山东开大《特许经营概论》形成性考核123答案+终结性考核答案.doc 2025年高考英语全国一卷真题(含答案).docx 2025国开山东《农民专业合作社创建与管理》形成性考核123答案+终结性考核答案.docx 2025国开山东开大《自然现象探秘》形成性考核123答案+终结性考核答案.docx 2025国开山东《消费心理学》形成性考核123答案+终结性考核答案.doc 2025国开山东《小微企业管理》形成性考核123答案+终结性考核答案.doc 2025国开山东开大《资本经营》形成性考核123答案+终结性考试答案.docx 2025国开山东《小学生心理健康教育》形考123答案+终结性考试答案.docx 2025国开《视频策划与制作》形考任务1-4答案.docx 2025国开《亲子关系与亲子沟通》形考任务234答案+期末大作业答案.docx 2025国开电大《煤矿地质》形成性考核123答案.docx 2025国开电大《冶金原理》形考任务1234答案.docx 2025国开《在线学习项目运营与管理》形考任务1234答案.doc 2025国开电大《在线教育的理论与实践》阶段测验1-4答案.docx 2024 年注册环保工程师《专业基础考试》真题及答案解析【完整版】.docx 环保工程师---2023 年注册环保工程师《专业基础考试》真题及答案解析【完整版】.docx 2025国开《液压与气压传动》形考任务一参考答案.docx 2025年春江苏开放大学教育研究方法060616计分:形成性作业2、3答案.docx
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.