
0第三章3第六节模态判断及其推理.doc
13页第二章词项逻辑1第六节 模态判断及其推理研究“必然” 、 “可能”模态词及其推理的逻辑理论被称为模态逻辑1)这位疑似病人患“非典” 的可能性非常大2)抗“非典”后,我国旅游业的强劲“反弹”是必然的3)“非典”的再次引发是可能的,因为我们至今没有掌握其发病的机率,不引发“非典”不具有必然性一、模态与模态逻辑1、模态的概念与分类(1)模态的概念逻辑学所用的“模态”—词,是英语“modal”的音译,源于拉丁语“modalis ”,含有形态、样式或形式的意思模态,具体指客观事物或主观认识的存在或发展的样式、情态、趋势等反映人们模态认识的结果,就形成模态概念对不同的模态,人们会形成不同的模态概念,构造不同的模态理论2)模态的分类① 狭义模态与广义模态狭义模态是指事物存在方式或发展趋势及命题的真假程度之类性质的模态,包括命题的必然性、实然性和或然性(可能性) 由于这类模态涉及一个命题的真假程度(必然真或者可能真) 因此被称为真值模态这样的模态就是狭义模态除狭义模态以外的模态是广义模态广义模态涉及命题本身所具有的种种非外延的性质包括道义或规范模态(应当、允许) 、时间模态(将要永远、将来、过去一直、过去) 、认知模态(知道、相信) 、价值模态(好、坏)等等。
例如:(4)应当允许大学生在校学习期间进行自主创业 (规范模态)(5)他过去一直是从事青少年智力开发研究的 (时间模态)(6)我们相信“非典” 过后,我国的 GPD 依然可以达到 7%以上 (认知模态)(7)大学毕业生到西部创业开发非常好 (价值模态)第二章词项逻辑2② 客观模态与主观模态所谓客观模态是表示客观事物本身存在的样式、情状和趋势的模态例如:(8)人的手必然没有视觉功能9)生物体必然要进行新陈代谢10)人类社会总体必然走向进步,但局部出 现曲折也是可能 的它们断定的都是客观事物本身存在的必然性或可能性,这种必然性或可能性是不受认识主体的意志而转移的所谓主观模态则是表示人们认识的某种确定性与不确定性的模态如(11)果子狸可能是引发 SARS 的元凶 (12)果子狸不可能是引发 SARS 的元凶 果子狸是不是引发 2003 年中国 SASR 的元凶?这本身是客观存在的,而(11) 、 (12)命题的断定仅仅表示人们对此关联认识的确定性程度,或者说是表示断定者对该命题的确信程度,所以它们所表示的都是主观模态③ 逻辑模态与非逻辑模态所谓逻辑模态是指逻辑上的必然性和可能性例如,(13)不可能:今年是 2006 年,今年又不是 2006 年。
不论这一命题中的“今年”指的是哪一年,仅仅通过其中的逻辑关系我们就可以看出,“今年是 2004 年或者今年不是 2004 年”必然是真的,这种必然性就是逻辑上的必然性如果否定一个具有逻辑必然性的命题,其结果必定会引起逻辑上的矛盾如否定“今年是 2003 年或者今年不是 2003 年”得到的是“今年不是 2003 年并且今年是2003 年” ,这是一个矛盾式(p∧¬ p) 所谓逻辑上的可能性指的是逻辑上的不矛盾性,即一切逻辑上不矛盾的都是逻辑上可能的一般认为,逻辑模态还包括 数学的模态 或 语义的模态 断定例如:(14)3+7 不可能不等于 10(15)单身汉必然是未婚男子所谓非逻辑模态是指表示逻辑以外的必然性或可能性的模态,即依据其他非逻辑事实来判定的必然性与可能性的各种模态这类非逻辑的模态,可以是物理的、化学的、生物的、历史的,乃至哲学的等等,这些模态统称为非逻辑模态,有时也统称物理模态或现实模态例如:第二章词项逻辑3(16)在地球上,自由落体下落的方向必然朝下17)没有氧气,哺乳动物不可能 维持生命18)生产力的持续发展是可能的19)任何事物的运动都必然是有规律的它们依次表达的是物理上的必然性、生物学上的不可能性、经济学的可能性和哲学上的必然性。
·非逻辑模态不同于逻辑模态非逻辑模态依据的是非逻辑领域的具体知识,因此其所断定的“必然性”或“可能性” ,会由于人们具体知识的变化而改变,而这种情况在逻辑模态方面是不会发生的例如:在古代生产“方的西瓜”是不可能的,但是在今天则不是不可能的;然而“圆的方”则无论古今中外都是不可能的同时,可以发现:非逻辑上的不可能(如“太阳明天从西方升起” )在逻辑上未必是不可能的,而逻辑上的必然在其他非逻辑方面却一定是必然的·否定逻辑模态的必然性模态必定导致逻辑矛盾,而否定非逻辑模态的必然性模态,虽然会与现有的相关理论不一致,却未必引起逻辑矛盾④ 命题模态与事物模态在逻辑史上,欧洲中世纪的逻辑学家还常把模态区分为“命题模态”与“事物模态” 所谓命题模态,指用于修饰或限制某一完整命题的模态,从语法上看,其模态词通常置于表达命题的语句的句首或句尾例如:(20)“正义的事业将最终取得胜利”是必然的,(21)“可能本地 8 月上旬依然是高温天气”20)表示“正义的事业将最终取得胜利“这一命题为真具有必然性, (21)表示“本地 8 月上旬仍然是高温天气”这一命题为真具有可能性在这两个命题中,模态词所修饰或限制的都是—个完整的命题,故称之为命题模态。
所谓事物模态,是指其模态词所修饰或限制的仅仅是命题主项所表示的事物与命题谓项所表示的属性之间的联系方式在语言表达上,其模态词居于主项与谓项之间例如:(22)淮河可能泛滥22)断定的是淮河这一事物对象可能引发泛滥第二章词项逻辑4上述提及的多种模态或其分类,可以归纳如下:逻辑客观狭义 非逻辑(物理、生物、哲学…)模态 主观广义(道义、认知、时间…)其主要视点是模态的对象或性质从逻辑学的角度看,由于无论何种模态总是可以表现为一定的模态命题,具有一定的模态命题形式,因此本节后续的讨论,将只分析模态命题(必然命题与可能命题)形式,而不再强调其模态的上述种类区别 2、模态逻辑模态逻辑就是研究模态命题及其推理的逻辑理论对模态的研究,从亚里士多德就开始了亚里士多德逻辑已经对必然、可能和偶然等模态概念作了初步的研究他将命题划分为实然命题和模态命题,并依照实然三段论建立了模态三段论,现已证明其中许多形式都是有效的在中世纪,欧洲经院哲学家在模态三段论方面取得了不少成果他们区别了命题模态与事物模态,还研究了知道、怀疑、愿意等主观模态和应当、允许等道义模态的逻辑性质如果说亚里士多德与中世纪经院哲学家关于模态逻辑的研究属于古代传统模态逻辑理论的话,那么现代的模态逻辑则是从美国逻辑学家刘易斯(C.I.Lewis,1883 -1964)开始的。
1914 年刘易斯因研究“严格蕴涵”而提出模态命题逻辑理论以后(约 20 世纪 30—40 年代)中,卡尔纳普(R.Carnap )等人又建立了模态谓词演算20 世纪 50 年代则诞生了模态逻辑的语义理论,其中较为流行的是美国逻辑学家克里普克(S.Kripke )的可能世界语义理论因此,可以说模态逻辑理论从传统到现代已经形成了丰富的内容本节主要介绍传统模态逻辑中的狭义模态逻辑知识,即关于命题的必然性与可能性的真值模态理论其后,再简要介绍广义模态逻辑中的道义模态逻辑的基本概念二、模态命题1、模态命题的定义与结构表示事物或事物情况必然性或可能性真假情况或程度的命题,我们称为真值模态命题在 真值模态命题 中,必然模态与可能模态是分别由模态词“必然” (□)和“可能” (◇)来表示的必然”模态词与“可能”模态词,也可以用“L”与“M”来表示 ) 因此,我们也可以说,包含“必然”和“可能”模态词的命题为真值模态命题以下简称模态命题)例如:第二章词项逻辑5(1)SARS 由广东引发不是必然的2)酒后驾车发生事故是可能的 ◇p模态命题由模态词“必然” (□)和“可能” (◇)与非模态命题组成。
其中,模态词为模态命题形式中的常项,非模态命题 p 为变项在自然语言中,模态命题中的模态词的表达是多种多样的在汉语中,除“必然”外, “必定” 、 “一定”等也表达必然模态词;除“可能”外, “大概” 、 “也许” 、 “或然”等也表达可能模态词模态词在表达命题的语句中所处的位置,可以在句首,可以在句中,也可以在句末在命题逻辑中,求得简单模态命题的命题形式,应该先确定模态词,并将其置于表达式之首,然后用小写 p、q、r 等表示非模态命题例如,上述(1) 、 (2)的结构形式分别为:□﹁p 或◇q2、模态命题的种类根据模态命题断定的是事物情况的必然性还是可能性,可以将其区分为必然命题与可能命题1)必然命题必然命题是断定事物情况必然性的命题按质又可分为肯定的与否定的两种:▲ 必然肯定命题,就是断定事物情况必然存在的命题例如:今年过后必然是明年曹操的年龄比曹植大是必然的用公式可表示为:必然 p“p”表示除“必然”模态词以外的非模态命题如以“□”表示必然模态词,则上述公式可写为:□p ▲必然否定命题,就是表示某种事物情况必然不存在的命题例如:老鼠必然没有老牛大谎言不能持久是必然的用公式可表示为:必然非 p或表示为:□﹁ p(2)可能命题第二章词项逻辑6可能命题,也称或然命题,就是断定事物情况可能性的命题。
按质,它也可以分为肯定的与否定的两种:▲ 可能肯定命题,就是断定事物情况可能存在的命题例如:长期大量吸烟可能致癌2x 大于 5x 是可能的用公式可表示为:可能 p如以“◇”表示可能模态词,则上述公式可写为:◇p▲可能否定命题,就是断定事物情况可能不存在的命题例如:火星上可能没有生命存在这样直说可能不恰当用公式可表示为:可能非 p或表示为:◇﹁p 真值模态命题的真假判定,因为涉及“必然”与“可能”而有其复杂性在模态命题形式中,诸如“必然 p”或“可能 p”的真假,并不仅仅由“p”的真假来确定,即“p”对于“必然 p”之类模态命题形式不具有函项性例如,人们不能仅仅根据“2003 年引发 SARS”的真假,就能确定“2003 年必然引发 SARS”或“2003 年可能引发 SARS”的真假模态命题真假,需要借助模态逻辑语义学对“必然” 、 “可能”的说明才能确定借助于可能世界的语义理论,我们可以对“必然”和“可能”加以定义:□p 为真,当且仅当 p 在所有可能世界中为真;□p 为假,当且仅当 p 在至少一个可能世界中为假;◇p 为真,当且仅当 p 在至少一个可能世界中为真;◇p 为假,当且仅当 p 在所有可能世界中为假。
不难看出,□p 与◇p 是可以相互定义的例如:□p=df﹁◇﹁p◇p=df﹁□﹁p第二章词项逻辑73、真值模态命题的真假关系同素材的真值模态命题必然 p、必然非 p、可能 p、可能非 p,有如下真假制约关系1)必然 p 与必然非 p 之间的反对关系:即不同真、可同假,至少一假(必有一假)的关系如“甲队必然战胜乙队”与“甲队必然不能战胜乙队” 2)可能 p 与可能非 p 之间的下反对关系:即可同真、不同假,至少一真(必有一真)的关系如“甲班可能获得团体第一名”与“甲班可能未获的团体第一名” 3)必然 p 与可能非 p、必然非 p 与可能 p 之间的矛盾关系:即不同真、不同假,必有一真一假的关系如“小张必然考上研究生”与“小张可能没考上研究生” 4)必然 p 与可能 p、必然非 p 与可能非 p 之间的差等关系:即可同真、可同假的关系如“中国队必然进入决赛”与“中国队可能进入决赛” , “中国队必然进不了决赛”与“中国队可能进不了决赛” 如同直言命题同素材的 SAP、SEP、SIP 、SOP 一样,同素材的□p、□﹁p、◇p、◇﹁p 之间也可以构成模态对当方阵,即:反对 □p □﹁p 差 矛 盾 差 等 等。












