
离散数学:B_6_4_6.4-群的同态及同构.ppt
121页第六章 群、环、域 6.4 群的同态及同构群的同态及同构一、群的同态映射一、群的同态映射二、群的同构映射二、群的同构映射三、同态核三、同态核一、群的同态映射群的同态映射a b c db c d a顺时针旋转顺时针旋转90a b c dc d a b顺时针旋转顺时针旋转180a b c dd a b c顺时针旋转顺时针旋转270,rr,rrra b c da b c d顺时针旋转顺时针旋转0(I,r,r2,r3,)是一个群是一个群,记为,记为r,记为,记为I一、群的同态映射群的同态映射a b c dd c b aa b c da d c b翻转翻转a b c dc b a d翻转翻转,sr,srrra b c db a d c翻转,记为翻转,记为s 翻转翻转,srr(I,r,r2,r3,s,sr,sr2,sr3,)是一个群是一个群称为二面体群,记作称为二面体群,记作D D4 4或或D D8 8.一、群的同态映射群的同态映射Irr2r3ssrsr2sr3IIrr2r3ssrsr2sr3rrr2r3Isr3ssrsr2r2r2r3Irsr2sr3ssrr3r3Irr2srsr2sr3ssssrsr2sr3Irr2r3srsrsr2sr3sr3Irr2sr2sr2sr3ssrr2r3Irsr3sr3ssrsr2rr2r3I一、群的同态映射群的同态映射Irr2r3ssrsr2sr3IIrr2r3ssrsr2sr3r2r2r3Irsr2sr3ssrrrr2r3Isr3ssrsr2r3r3Irr2srsr2sr3ssssrsr2sr3Irr2r3sr2sr2sr3ssrr2r3Irsrsrsr2sr3sr3Irr2sr3sr3ssrsr2rr2r3I一、群的同态映射群的同态映射Ir2rr3ssr2srsr3IIr2rr3ssr2srsr3r2r2Ir3rsr2ssr3srrrr3r2Isr3srssr2r3r3rIr2srsr3sr2ssssr2srsr3Ir2rr3sr2sr2ssr3srr2Ir3rsrsrsr3sr2sr3rIr2sr3sr3srssr2rr3r2I一、群的同态映射群的同态映射Ir2rr3ssr2srsr3IIr2rr3ssr2srsr3r2r2Ir3rsr2ssr3srrrr3r2Isr3srssr2r3r3rIr2srsr3sr2ssssr2srsr3Ir2rr3sr2sr2ssr3srr2Ir3rsrsrsr3sr2sr3rIr2sr3sr3srssr2rr3r2I一、群的同态映射群的同态映射eerr3ssr2srsr3eeerr3ssr2srsr3eeer3rsr2ssr3srrrr3eesr3srssr2r3r3reesrsr3sr2ssssr2srsr3eerr3sr2sr2ssr3sreer3rsrsrsr3sr2sr3reesr3sr3srssr2rr3ee一、群的同态映射群的同态映射eerr3ssr2srsr3eeerr3ssr2srsr3eeer3rsr2ssr3srrrr3eesr3srssr2r3r3reesrsr3sr2ssssr2srsr3eerr3sr2sr2ssr3sreer3rsrsrsr3sr2sr3reesr3sr3srssr2rr3ee一、群的同态映射群的同态映射eeaassr2srsr3eeeaassr2srsr3eeeaasr2ssr3sraaaeesr3srssr2aaaeesrsr3sr2ssssr2srsr3eeaasr2sr2ssr3sreeaasrsrsr3sr2saaeesr3sr3srssr2aaee一、群的同态映射群的同态映射eeaassr2srsr3eeeaassr2srsr3eeeaasr2ssr3sraaaeesr3srssr2aaaeesrsr3sr2ssssr2srsr3eeaasr2sr2ssr3sreeaasrsrsr3sr2saaeesr3sr3srssr2aaee一、群的同态映射群的同态映射eeaabbsrsr3eeeaabbsrsr3eeeaabbsr3sraaaeesr3srbbaaaeesrsr3bbbbbsrsr3eeaabbbsr3sreeaasrsrsr3bbaaeesr3sr3srbbaaee一、群的同态映射群的同态映射eeaabbsrsr3eeeaabbsrsr3eeeaabbsr3sraaaeesr3srbbaaaeesrsr3bbbbbsrsr3eeaabbbsr3sreeaasrsrsr3bbaaeesr3sr3srbbaaee一、群的同态映射群的同态映射eeaabbcceeeaabbcceeeaabbccaaaeeccbbaaaeeccbbbbbcceeaabbbcceeaacccbbaaeecccbbaaee一、群的同态映射群的同态映射eeaabbcceeeaabbccaaaeeccbbbbbcceeaacccbbaaee一、群的同态映射群的同态映射eabceeabcaaecbbbceaccbae一、群的同态映射群的同态映射Ir2rr3ssr2srsr3IIr2rr3ssr2srsr3r2r2Ir3rsr2ssr3srrrr3r2Isr3srssr2r3r3rIr2srsr3sr2ssssr2srsr3Ir2rr3sr2sr2ssr3srr2Ir3rsrsrsr3sr2sr3rIr2sr3sr3srssr2rr3r2I*eabceeabcaaecbbbceaccbaeD8Klein三、同态核同态核Ir2rr3ssr2srsr3IIr2rr3ssr2srsr3r2r2Ir3rsr2ssr3srrrr3r2Isr3srssr2r3r3rIr2srsr3sr2ssssr2srsr3Ir2rr3sr2sr2ssr3srr2Ir3rsrsrsr3sr2sr3rIr2sr3sr3srssr2rr3r2I*eabceeabcaaecbbbceaccbaeD8Klein三、同态核同态核eabceeabcaaecbbbceaccbae*eabceeabcaaecbbbceaccbaeKlein一、群的同态映射群的同态映射Ir2rr3ssr2srsr3eabcD8Klein三、同态核同态核Ir2rr3ssr2srsr3IIr2rr3ssr2srsr3r2r2Ir3rsr2ssr3srrrr3r2Isr3srssr2r3r3rIr2srsr3sr2ssssr2srsr3Ir2rr3sr2sr2ssr3srr2Ir3rsrsrsr3sr2sr3rIr2sr3sr3srssr2rr3r2I*eabceeabcaaecbbbceaccbaeD8Klein一、群的同态映射群的同态映射注意:这个映射注意:这个映射既不一定是单射也不一定是满射。
既不一定是单射也不一定是满射定义定义6.4.1设设(G,)是一个群,是一个群,(K,*)是一个代数系统,是一个代数系统,(G,)到到(K,*)内的一个映射内的一个映射称作是同态映射,如果称作是同态映射,如果对任意对任意a、b G都有都有 (ab)=(a)*(b)一、群的同态映射群的同态映射群群(G,)代数系统代数系统(K,*)ab(a)(b)*一、群的同态映射群的同态映射例例1 1设设(Z,+)(Z,+)为整数加法群,为整数加法群,(C(C*,)是所有非是所有非零复数在数的乘法下作成的群,令零复数在数的乘法下作成的群,令 :Z Z C C*,(n)=i,(n)=in n,其中,其中i i是是C C的虚的虚数单位则则是是Z Z到到C C*内的一个映射,且对内的一个映射,且对 m m、nZnZ,有,有 (m+n)=i(m+n)=im+nm+n=i=im mi in n=(m)=(m)(n)(n)即,即,是是Z Z到到C C*的同态映射,的同态映射,Z Z(Z)(Z)Z)=1 (Z)=1,-1-1,i i,-i-i既不是满射,也不是单射既不是满射,也不是单射一、群的同态映射群的同态映射例例2 2设设G=(Z,+),GG=(Z,+),G=(R,+)=(R,+),令,令 :G G G G,(x)=,(x)=-x-x,因为因为 (x(x1 1+x+x2 2)=-(x)=-(x1 1+x+x2 2)=-x)=-x1 1+(-x+(-x2 2)=(x)=(x1 1)+(x)+(x2 2),所以所以 是是G G到到 G G的同态映射,显然的同态映射,显然是单射不是是单射不是满射。
满射一、群的同态映射群的同态映射例例3 3对于群对于群G G1 1=(R,+)=(R,+)和和G G2 2=(R=(R+,),令,令 :G G1 1 G G2 2,(x)=,(x)=e ex x则则是同态映射,而且是双射是同态映射,而且是双射一、群的同态映射群的同态映射例例4 4设设G G1 1是整数加法群,是整数加法群,G G2 2是模是模n n的整数加法群的整数加法群令令 :G G1 1G G2 2,(x)=x)=x(mod n)x(mod n),则则是是G G1 1到到G G2 2的满同态映射,的满同态映射,G G1 1(G(G1 1),(G(G1 1)=G)=G2 2一、群的同态映射群的同态映射,-12,-6,0,6,12,012,-11,-5,1,7,13,-10,-4,2,8,14,-9,-3,3,9,15,-8,-2,4,10,16,-7,-1,5,11,17,345(Z6,+6)(Z,+)一、群的同态映射群的同态映射例例5 5设设Z Z6 6是模是模6 6整数加法群,整数加法群,Z Z3 3是模是模3 3整数加法群整数加法群令令 :Z Z6 6Z Z3 3,(x)=x)=x(mod 3)x(mod 3),则则是是Z Z6 6到到Z Z3 3的满同态映射,的满同态映射,Z Z6 6(Z(Z6 6),(Z(Z6 6)=)=Z Z3 3是是Z Z3 3的一个子群。
的一个子群一、群的同态映射群的同态映射0,31,42,5012(Z6,+6)(Z3,+3)一、群的同态映射群的同态映射注意:这个映射注意:这个映射既不一定是单射也不一定是满射既不一定是单射也不一定是满射定义定义6.4.1设设(G,)是一个群,是一个群,(K,*)是一个代数系统,是一个代数系统,(G,)到到(K,*)内的一个映射内的一个映射称作是同态映射,如果称作是同态映射,如果对任意对任意a、b G都有都有 (ab)=(a)*(b)当考虑当考虑G中所有元素在中所有元素在K中映像时,有下面定理中映像时,有下面定理一、群的同态映射群的同态映射定理定理6.4.1设设是群是群(G,)到代数系统到代数系统(K,*)内的一个同内的一个同态映射,态映射,G=(G),则,则(1)(G,*)是一个群,是一个群,(2)(G,*)的单位元的单位元1就是就是(G,)的单位元的单位元1的映像的映像(1),(3)对任意对任意a G,(a)-1=(a-1))一、群的同态映射群的同态映射群群(G,)代数系统代数系统(K,*)aa-1(a)(a-1)(G)群群11互互逆逆互互逆逆一、群的同态映射群的同态映射证明:因为证明:因为G非空,显然非空,显然G非空,要证非空,要证(G,*)做成群:做成群:首先要证首先要证G中中*运算封闭。
运算封闭其次,证其次,证G中中*运算有结合律成立运算有结合律成立再次,证再次,证G有左壹最后,证最后,证G中的任意元素中的任意元素a有左逆一、群的同态映射群的同态映射证明:因为证明:因为G非空,显然非空,显然G非空,要证非空,要证(G,*)做成群:做成群:证证G中中*运算封闭,任取运算封闭,任取a G、b G,设,设(a)=a,(b)=b,按,按的同态性的同态性(ab)=(a)*(b)=a*b,故,故a*b是是G的元素的元素ab的映像,因而的映像,因而a*b G证证G中中*运算有结合律成立:任取运算有结合律成立:任取a、b、c G,设设(a)=a,(b)=b,(c)=c,又因为群,又因为群G。












