好文档就是一把金锄头!
欢迎来到金锄头文库![会员中心]
电子文档交易市场
安卓APP | ios版本
电子文档交易市场
安卓APP | ios版本

根式函数值域.doc

6页
  • 卖家[上传人]:小**
  • 文档编号:93651974
  • 上传时间:2019-07-26
  • 文档格式:DOC
  • 文档大小:425.10KB
  • / 6 举报 版权申诉 马上下载
  • 文本预览
  • 下载提示
  • 常见问题
    • 探究含有根式的函数值域问题 含根式的函数的值域或者最值问题在高中数学的学习过程中时常遇到,因其解法灵活,又缺乏统一的规律,给我们造成了很大的困难,导致有些学生遇到根式就害怕为此,本文系统总结此类函数值域的求解方法,供学生参考学习1. 平方法例1:求的值域解:由题意知函数定义域为,两边同时平方得:=4+利用图像可得,又知0所以函数值域为 析:平方法求值域适用于平方之后可以消去根式外面未知量的题型把解析式转化为 的形式,先求的范围,再得出的范围即值域2. 换元法例2: 求值域1) 2)解:(1)首先定义域为,令,将原函数转化为, 析:当函数解析式由未知量的整数幂与根式构成,并且根式内外的未知量的次幂保持一致可以考虑用代数换元的方法把原函数转化成二次函数,再进行值域求解 (2) 首先,函数定义域为,不妨设,令 则原函数转化为:, 析:形如题目中的解析式,考虑用三角换元的方法,在定义域的前提下,巧妙地规定角的取值范围,避免绝对值的出现不管是代数换元还是三角换元,它的目的都是为了去根式,故需要根据题目灵活选择新元,并注意新元的范围。

      3. 数形结合法 例3:1)求的值域 2)求的最小值 解:(1) 其解析式的几何意义为数轴上的一动点,到两定点2与-8的距离之和,结合数轴不难得到(2) 解析式可转化为 , 定义域为,进行适当的变形, 由它的形式联想两点间的距离公式,分别表示点到点的距离与点的距离之和点到 和的距离之和即,结合图形可知,其中 析:根据解析式特点,值域问题转化成距离问题,结合图形得出最值,进而求出了值域例4:1) 求的值域 2)求的值域解:(1)函数定义域为令,消去可得当时,,原解析式可化为,即原值域问题可转化为:过圆弧(,)上的一动点,且斜率为1的直线系 在 轴上的截距 的范围问题结合图形可得,当直线过点时,,当直线与圆弧相切时所以原函数的值域为2) 函数定义域为令,,消去可得 其中,, 原函数可转化为, 即 原值域问题可转化为:过椭圆 ()上的一点且斜率为-1的直线系在轴上的截距的范围问题数形结合可得,当直线过点时,当直线与椭圆弧相切时, 消去得 由,或者(舍去)得析:本组题目借助于直线与曲线的位置关系(常用的是直线与圆,直线与椭圆),巧妙地把复杂的值域问题转化成截距问题, 不管是把值域问题转化成动定点间的距离问题还是直线与曲线的位置关系问题,数形结合的方法,都可以巧妙地避开复杂的运算,使运算过程大大简化,但要求解析式具有某种明显的几何意义。

      4. 向量法例5:求的最大值 解:解析式的定义域是,解析式可以看成是2个向量的数量积,不妨设,,所以,其中,,根据向量的数量积定义得=39,当且仅当和同向的时候,“=”成立,即=,,因为,所以最大值为395. 利用函数单调性例6: 求函数的值域解:函数定义域为,易知函数在上是单调递增数列当时,,当时,所以函数的值域为 析:若函数解析式可以比较方便判断他的单调性,那用这种方法就比较简洁尤其是在填空题中,从函数的单调性入手可以提高做题的速度6. 导数法例7:求函数的值域解:函数定义域为=当时,0 函数在上单调递增,又函数的值域为析:导数法是求函数值域的一个有力的工具,只不过含根式的函数求导过程比较繁琐,在实际操作的时候,注意运算的准确性 通过此文不难发现,含根式函数的值域问题的求解方法虽多,但各有各的可行条件所以拿到题目时,首先观察它的单调性,如果不明显,判断起来比较麻烦,那么再根据结构特征,选择恰当的方法,切忌凭借机械记忆生搬硬套,当然还需注意运算的准确性。

      点击阅读更多内容
      关于金锄头网 - 版权申诉 - 免责声明 - 诚邀英才 - 联系我们
      手机版 | 川公网安备 51140202000112号 | 经营许可证(蜀ICP备13022795号)
      ©2008-2016 by Sichuan Goldhoe Inc. All Rights Reserved.